Величина обратная коэффициенту наращения. Эффективная ставка наращения. Простой процент: наращенная сумма, текущая стоимость, коэффициенты наращения и дисконтирования

Величина обратная коэффициенту наращения. Эффективная ставка наращения. Простой процент: наращенная сумма, текущая стоимость, коэффициенты наращения и дисконтирования

Коэффициент дисконтирования позволяет определить, сколько стоит что-то из прошлого в настоящем или будет стоить в будущем. Стоит рассмотреть простой пример: предположим, вы получаете какую-то сумму на свой расчетный счет, потому что когда-то сделали удачное вложение и теперь получаете заслуженные дивиденды. Означает ли, что подлинная стоимость вклада в прошлом - это прибыль, получаемая в настоящий момент? Во многом. Но не все так неоднозначно, ведь следует еще оценить риски, которыми сопровождалась эта инвестиция, а они есть всегда.

Однако случаются ситуации, когда на вопрос о будущей или настоящей стоимости какого-либо действия (ренты или актива) в прошлом требуется ответить сейчас. Четко, конкретно, в цифрах. Пример такой необходимости - обоснование заявки на кредитование в банке. Один доллар сегодня - это меньше, чем один доллар завтра. И когда финансовый институт будет одобрять ссуду, он хотел бы видеть, что заемщик понимает это. Поэтому при кредитовании какого-либо проекта непременно требуется осуществить расчет приведенных потоков денежных средств различной природы: как выручки, так и издержек.

Но применение процедуры дисконтирования осуществляется не только банками. Во многом это необходимо самим предпринимателям в процессе планирования для того, чтобы не допускать фатальных ошибок с рентабельностью бизнес-процессов. Отчасти поэтому коэффициент дисконтирования иногда называют подлинной стоимостью ренты. Разобраться в процессе расчета и экономическом смысле получаемых результатов предлагается на страницах этой статьи.

Природа ставки дисконтирования: стоимость времени

Время - деньги. Верно, хоть и не тождественно. У этого закона есть логически выверенное обоснование, лежащее в плоскости экономики. Речь идет о возможности создания благ, имеющих рыночную оценку. Допустим, человек, имеющий в кармане 10 долларов, приобретает на эти деньги какой-либо пользующийся спросом товар - например, яблоки. Далее следует их перепродажа с наценкой, предположим, в 10%. Вся операция у него занимает 1 день. Тогда на начало следующего дня у человека будет уже 11 долларов, а стоимость одного дня времени у него будет равна 1 доллару.

Именно сама возможность использовать деньги для создания добавленной стоимости и рождает природу процента за их использование. С наступлением времени, когда рынки (в т.ч. финансовые) стали работать по правилам, процент по кредитам, выдаваемым банками, стал отражать фактическую возможность и размер заработка в экономике.

И отсюда следует, что процент, как заработок, можно рассмотреть в двух проекциях:

  1. бухгалтерский (фактический) процент. Это та величина, которая прописывается в кредитном договоре.
  2. экономический процент (экономическая прибыль). Это превышение фактического процента над доходностью лучшей из альтернатив вложения этих же средств.

Это проще понять, если встать на позиции кредитного института (банка), ссужающего средства. По кредиту этот институт взимает фактический процент. Но если есть некий коммерческий проект, куда можно вложить те же деньги, вместо того, чтобы выдавать их по договору кредитования. Тогда экономический процент для банка будет рассчитываться, как разница между тем процентом, который идет по кредитному соглашению, и доходностью альтернативного проекта.

Если бухгалтерский процент всегда положительный, то экономический - далеко не всегда. Положительное значение экономического процента свидетельствует, что банк (или любое другое предприятие на его месте) наиболее рационально выбрал сферу предпринимательской активности. (Раз уж самая лучшая альтернатива менее доходна, чем профильная деятельность).

Конкретный пример: начиная с 1995 года внутренние государственные облигации РФ (ГКО) демонстрировали чудеса доходности. При 100% надежности (согласно теории) они выдавали 50%, 60% и даже 85% доходность по году (при инфляции, не превышавшей 24% годовых). Многие предприятия в стране фактически прекратили свою профильную деятельность, переведя свои оборотные средства на финансовый рынок, непрерывно прокручивая их с помощью ГКО. Особо догадливые одновременно с пулом облигаций приобретали фьючерс на валюту, чтобы захеджировать риски дефолта. Кризис 1998 года каждый переживал, как мог, но в предшествующие 3 года в стране наблюдался эффект замещения, когда сверхдоходность государственного долга, словно пылесосом вытягивала деньги из экономики. Экономический процент по любой деятельности в стране тогда был отрицательным.

Не случайно приводится пример, связанный с доходностью именно государственных облигаций. Кроме функций покрытия дефицита госбюджета они являются действенным инструментом, позволяющим властям регулировать норму прибыли в экономике. Доходность облигаций именуется ставкой процента. В здоровой ситуации, когда рынки максимально эффективны, фактическая прибыльность в различных отраслях равна ставке процента, т.е. экономический процент равен 0.

Таковой на конец 2016 года была признана ситуация на европейском рынке. Процентная ставка Европейского центрального банка с 10.03.2016г. равнялась 0%. Одновременно с этим многие крупные известные производители Германии, Италии и Франции заканчивали год также с нулевой экономической прибылью. Отсюда вывод - не всегда нулевой экономический результат говорит о низком качестве управления бизнесом. Иногда это свидетельство высокой эффективности рынков.

Обоснование теоретической и практической актуальности процентной ставки в экономике имеет здесь свои причины. Допустим, по каким-то причинам индивиду потребовалось узнать, какой бы капитал он имел бы сейчас, если бы 3 года назад продал свою квартиру. Если рассматривать вложения в гипотетический бизнес, или же вклады в различные банки и другие способы, то можно уйти весьма далеко от объективности. Все эти вложения имеют высокий риск (можно вообще все потерять). Именно поэтому принято брать в расчет процентную ставку по тем обязательствам, которые гарантированы финансовой мощью государства. Этот процент и будет стоимостью потраченного времени, и именно он является нормативом ставки дисконтирования.

Теперь немного математики. Во всех описанных выше примерах приводилось обоснование выбора той или иной нормы процента. А сейчас нам нужно произвести четкие расчеты. В этом нам поможет коэффициент дисконтирования.

Определение: коэффициент дисконтирования - это показатель, применяемый для приведения величины некой денежной величины к заданному моменту (называемому моментом приведения).

Этот показатель наглядно демонстрирует, какую сумму мы получим с учетом фактора времени (т.е. через определенный период), исходя из заданной ставки дисконтирования. Последний термин, согласно изложенному в предыдущем разделе, соответствует процентной ставке по обязательствам, гарантированным государством. Формула коэффициента дисконтирования такова:

n

Любопытен смысл показателя n. Здесь не ошибиться гораздо важнее, чем с определением корректной величины ставки дисконтирования. N говорит нам, сколько раз мы можем реинвестировать получаемые результаты деятельности (т.е. потенциально зарабатываемую прибыль).

Допустим, начинающий рантье 3 года назад приобрел загородный дом. Он помнит сумму сделки, а главное, отслеживает его текущую рыночную стоимость. И он бы хотел оценить эффективность своего вложения. Сделаем ряд допущений: предположим, дом был куплен за $1 000 000, сейчас стоит $1 200 000, ставка процента все три года оставалась на уровне 15% (по годовым депозитам в государственном банке). Тогда его расчеты будут выглядеть следующим образом:

  • Рассчитываем коэффициент дисконтирования:

1 / (1 + 0,15) 3 = 0,572

  • Умножаем текущую стоимость дома на коэффициент дисконтирования:

1 200 000 * 0,572 = 686 400

686 400 << 1 000 000

Это означает, что рантье прогадал. Если бы он не вложил 1 000 000 в недвижимость, а положил бы эти деньги на депозит, то на настоящим момент мог бы и дом купить, и осталось бы еще немало (т.к. для покупки дома за 1 200 000 сегодня нужно было 3 года назад положить на депозит только 686 400).

Коэффициент наращения

Но вышеприведенная формула годится не только для фиксации текущих результатов ошибок прошлого. Зачастую нам более интересен расчет, сколько нам может в будущем принести то или иное вложение, совершаемое сейчас. В этом случае принято говорить о коэффициенте наращения. Его формула:

(1 + Ставка наращения)n

n - количество инвестиционных периодов до момента приведения.

И здесь для понимания опять поможет наш пример с яблоками. Человек совершал полный цикл за 1 день. Для простоты допустим, что за тот же самый 1 день он сможет купить или продать любое количество яблок: хоть 10, хоть 1000, хоть 1000000. Тогда, регулярно совершая свои операции и имея прибыльность по ним в размере 10%, при стартовом капитале в 10 долларов человек через год зафиксирует капитал в размере:

$10 * (1+0,1) 365 = $12833055803133800

Чудовищная сумма! Однако она понимает осознать, насколько важен показатель реинвестиционных возможностей (в разах).

Ну какой должна быть норма процента годовых, чтобы обеспечить сходный доход. Не нужно считать, чтобы понять - процент будет фантастическим, запредельным. Конечно, в реальной жизни оборот займет гораздо более долгий срок. И чем больше будет яблок, тем сложнее станет их продавать. Да и 10% маржа неизбежно пойдет вниз (раз предложение станет увеличиваться). Однако этот пример приведен здесь для того, чтобы продемонстрировать превалирование важности сроков рекапитализации над значением статического процента. Уж если и торговаться, то за возможность уменьшения сроков реинвестирования.

Net Present Value

В мире финансов постоянно складываются ситуации, когда результат какого-то действия сильно разнесен по времени (и не важно, в прошлом ли, настоящем или даже в будущем). Тем не менее, этот результат нужно каким-то образом привести к единой цифре, чтобы, например, иметь возможность сравнения. А если речь идет о прибыли, которая фиксировалась на расчетном счету компании раз в месяц на протяжении пяти лет - как нам привести все к единой цифре? Просто для того, чтобы сравнить эту цифру с первоначальными вложениями и определить эффективность бизнеса.

В этом случае речь идет о высчитывании Net Present Value (NPV) или Чистый Дисконтированный Доход (ЧДД) (а также Чистая Приведённая Стоимость или даже Чистая Текущая Стоимость). Это сумма дисконтированных значений потока платежей, приведённых к какому-то дню в прошлом. Этот день в прошлом, как правило, и есть день, когда производилось вложение. Как очевидно следует из определения, NPV рассчитывается при осуществлении процедуры планирования. В частности, при составлении бизнес-планов.

Для получения этого значения мы должны дисконтировать все составляющие денежного потока (в нашем случае - ежемесячные показатели прибыли) и дисконтировать каждый из них по формуле:

1 / (1 + Ставка дисконтирования)n

Далее суммируем полученные результаты и из этой суммы вычитаем величину первоначальных вложений. Получившийся показатель NPV - это разность между всеми денежными поступлениями и тратами, приведёнными к моменту инвестирования. Фактически, это размер денежных средств, которые предприниматель ожидает получить от своего бизнеса, после истечения заданного промежутка времени.

В действительности мы получаем размер экономической прибыли (ЭП). Соотнеся ее с первоначальными инвестициями (ПИ), рассчитываем величину экономического процента (доходности) (ЭД):

ЭД = ЭП / ПИ *100%

Это реальная отдача от проекта - то, насколько доходность именно этого бизнеса превышает общий по экономике уровень.

Рента, состоящая из финансовых поступлений, оценивается единой суммой, в расчет которой входит временная стоимость всех ее составляющих. Таким образом, NPV допустимо интерпретировать как реальную добавочную стоимость, образующуюся в результате предпринимательской деятельности (какова бы ни была сфера деятельности).

Конечно же, здесь крайне важно правильно выбрать ставку дисконтирования. Выше обосновывался ее выбор на уровне процента по обязательствам, гарантированным государством. Но это не всегда бывает верно, и пример дефолта 1998 года это подтверждает. Не смотря на то, что это были государственные облигации, пирамида рухнула и очень многие потеряли все свои вложения. Корректно ли тогда при расчетах было бы использовать заоблачные 60% реальной доходности по ГКО? Конечно же, нет. Здесь нельзя успокаиваться, если в названии ценных бумаг присутствует слово «государственные». Ключ ко всему - правильная оценка рисков. Для индикатива нам нужна доходность, соответствующая минимальному риску (в идеале - нулевому). В случае с агрессивными заимствованиями с помощью ГКО риск дефолта был крайне высок и просматривался уже, начиная с 1996 года.

Внутренняя норма доходности

Внутренняя норма доходности (internal rate of return — IRR) — это процентная ставка, которая задействуется при расчете NPV.

IRR имеет непосредственное отношение к приведенному выше примеру. Теперь при обосновании чистой приведенной стоимости в бизнес-плане не нужно дотошно привязывать прибыльную ренту к ставке по гос. облигациям. Достаточно заявить некую норму IRR и обосновать ее выбор двумя аргументами:

  1. Приведя пример сферы деятельности, обладающей меньшей доходностью и меньшим же риском;
  2. Упомянув другую деятельность (но похожую по своей инвестиционной сути), но с большим риском и большей доходностью.

Однако IRR «подбирается» не только и не столько для возможных кредиторов. Прежде всего, внутренняя норма доходности - цель и ориентир для собственников бизнеса. Это ставка, относительно которой будут в дальнейшем меряться все процессы даже в окружающей бизнес-среде. И решение об инвестировании в некую другую отрасль будет приниматься после непременного сравнения доходности предполагаемого проекта с IRR существующего предприятия.

Это верно не только для предприятий, но и для частных лиц. Только в этом случае под инвестированием, как правило, понимается вклад в какую-либо обслуживающую финансовую организацию (будь то банк, брокерская компания или венчурный фонд). А в качестве внутренней нормы доходности используются ставка процента по существующему депозиту (например) в проверенном временем надежном банке.

Ставка IRR - это мерило многих процессов в жизни. На самом деле абсолютно все без исключения индивиды имеют свою IRR! В конце концов, это то, к чему хочется стремиться. Поэтому так важно выбрать корректный ее уровень. Ведь слишком большое значение показателя может привести к завышенным ожиданиям как в бизнесе, так и в жизни, а заниженное - к фатальной недооценке собственных возможностей.

. База для начисления сложных процентов в отличие от простых не остается постоянной – она увеличивается с каждым шагом во времени. Абсолютная сумма начисляемых процентов возрастает, и процесс увеличения суммы долга происходит с ускорением. Наращение по сложным процентам можно представить как последовательное реинвестирование средств, вложенных под простые про центы на один период начисления ( running period ). Присоедине ние начисленных процентов к сумме, которая послужила базой для их начисления, часто называют капитализацией процентов.

Найдем формулу для расчета наращенной суммы при условии, что проценты начисляются и капитализируются один раз в году (годовые проценты). Для этого применяется сложная став ка наращения. Для записи формулы наращения применим те же обозначения, что и в формуле наращения по простым про центам:

P - первоначальный размер долга (ссуды, кредита, капита ла и т.д.),

S - наращенная сумма на конец срока ссуды,

п - срок, число лет наращения,

i - уровень годовой ставки процентов, представленный де сятичной дробью.

Очевидно, что в конце первого года проценты равны величине Р i , а наращенная сумма составит. К конц у второго года она достигнет величины В конце n -го года наращенная сумма будет равна

(4.1)

Процентыза этот же срокв целом таковы:

(4.2)

Часть из них поучена за счет начисления процентов на проценты. Она составляет

(4.3)

Как показано выше, рост по сложным процентам представ ляет собой процесс, соответствующий геометрической прогрессии, первый член которой равен Р , а знаменатель – . Последний член прогрессии равен наращенной сумме в конце срока ссуды.

Величину называют множителем наращения по сложным процентам. Значения этого множителя для целых чисел п приводятся в таблицах сложных процентов. Точность расчета множителя в практических расчетах определяется допустимой степенью округления наращенной суммы (до последней копейки, рубля и т.д.).

Время при наращении по сложной ставке обычно измеряет ся как АСТ/ A СТ.

Как видим, величина множителя наращения зависит от двух параметров - i и п. Следует отметить, что при большом сроке наращения даже небольшое изменение ставки заметно влияет на величину множителя. В свою очередь очень большой срок приводит к устрашающим результатам даже при небольшой процентной ставке.

Формула наращения по сложным процентам получена для годовой процентной ставки и срока, измеряемого в годах. Однако ее можно применять и при других периодах начисле ния. В этих случаях i означает ставку за один период начисления (месяц, квартал и т.д.), а n – число таких периодов. На пример, если i –ставка за полугодие, то п число полугодий и т.д.

Формулы (4.1) - (4.3) предполагают, что проценты на про центы начисляются по той же ставке, что и при начислении на основную сумму долга. Усложним условия начислений процен тов. Пусть проценты на основной долг начисляются по ставке i а проценты на проценты – по ставке В этом случае

Ряд в квадратных скобках представляет собой геометриче скую прогрессию с первым членом, равным 1, и знаменателем. В итоге имеем

(4.4)

· Пример 4.1

2. Начисление процентов в смежных календарных периодах. Вы ше при начислении процентов не принималось во внимание расположение срока начисления процентов относительно календарных периодов. Вместе с тем, часто даты начала и окончания ссуды находятся в двух периодах. Ясно, что начисленные за весь срок проценты не могут быть отнесены только к послед нему периоду. В бухгалтерском учете, при налогообложении, наконец, в анализе финансовой деятельности предприятия воз никает задача распределения начисленных процентов по периодам.

Общий срок ссуды делится на два периода n 1 и n 2 . Соответственно ,

где

· Пример 4.2

3. Переменные ставки. Формула предполагает постоянную ставку на протяжении всего срока начисления процентов. Неустойчивость кредитно-денежного рынка заставляет модернизировать “классическую” схему, например, с помощью применения плавающих ставок ( floating rate ). Естественно, что расчет на перспективу по таким ставкам весьма условен. Иное дело - расчет постфактум. В этом случае, а также тогда, когда измене ния размеров ставок фиксируются в контракте, общий множитель наращения определяется как произведение частных, т.е.

(4.5)

где - последовательные значения ставок; - периоды, в течение которых “работают” соответствующие ставки.

· Пример 4.3

4. Начисление процентов при дробном числе лет. Часто срок в го дах для начисления процентов не является целым числом. В правилах ряда коммерческих банков для некоторых операций проценты начисляются только за целое число лет или других периодов начисления. Дробная часть периода отбрасывается. В большинстве же случаев учитывается полный срок. При этом применяют два метода. Согласно первому, назовем его общим, расчет ведется по формуле:

(4.6)

Второй, сме шанный, метод предполагает начисление процентов за целое число лет по формуле сложных процентов и за дробную часть срока по формуле простых процентов:

,(4.7)

где – срок ссуды, а - целое число лет, b - дробная часть года.

Аналогичный метод применяется и в случаях, когда перио дом начисления является полугодие, квартал или месяц.

При выборе метода расчета следует иметь в виду, что мно житель наращения по смешанному методу оказывается несколько больше, чем по общему, так как для п < 1 справедли во соотношение

Наибольшая разница наблю дается при b = 1/2.

· Пример 4.4

5. Сравнение роста по сложным и простым процентам. Пусть временная база для начисленияодна и та же, уровень процентных ставок совпадает, тогда:

1) для срока меньше года простые проценты больше сложных

2) для срока больше года

3) для срока 1 год множители наращения равны друг другу

Используя коэффициент наращения по простыми сложным процентам можно определить время, необходимое для увеличенияпервоначальной суммы в n раз. Для этого необходимо, что быкоэффициенты наращениябыли равны величине n :

1) для простых процентов

2) для сложных процентов

Формулы дляудвоениякапитала имеют вид:

1.5. Финансовая рента. Свойства коэффициентов наращения и дисконтирования ренты.

Определение. Поток платежей, все члены которого положительны, а временные интервалы между платежами одинаковы, называется финансовой рентой.

Основные параметры ренты:

    член ренты - сумма отдельного платежа;

    период ренты - временной интервал между двумя соседними платежами;

    срок ренты - время от начала первого периода ренты до конца последнего;

    процентная ставка ренты - сложная процентная ставка, используемая для наращения и дисконтирования членов ренты;

    m - число начислений процентов в году на члены ренты;

    p - число платежей в году.

Если члены ренты выплачиваются раз в год, то рента называется годовой .

Если члены ренты выплачиваются p раз в году (p > 1), то рента называется p - срочной .

Если платежи поступают столь часто, что можно считать , то ренту называютнепрерывной .

Рента называется постоянной , если члены ренты одинаковы и не изменяются во времени.

Рента называется переменной , если члены ренты изменяются во времени в соответствии с некоторым временным законом.

Если платежи производятся в конце каждого периода ренты, то рента называется обычной или постнумерандо .

Рента с платежами в начале каждого периода называется рентой пренумерандо .

Рассмотрим расчет современной стоимости и наращенной суммы постоянной обычной (постнумерандо) p - срочной ренты. Ежегодно сумма R вносится равными долями p раз в году на банковский счет в течение n лет. Тогда имеем поток из np платежей величиной каждый в моменты
. Примем за единицу измерения времени 1 год. Пустьi - годовая эффективная процентная ставка начисления сложных процентов на поступающие платежи. Согласно определению современной стоимости потока платежей (формула (4.2)), получаем

.

Вычисляя сумму np членов геометрической прогрессии, знаменатель которой
, получим:

(5.1)

Современная стоимость постоянной обычной p - n лет. Отсюда современная стоимость годовой обычной ренты (p = 1) при начислении процентов на члены ренты 1 раз в году:

. (5.2)

Используя соотношения эквивалентности для эффективной процентной ставки
и
(параграф 1.1), получим современную стоимость обычнойp - срочной ренты при начислении на члены ренты сложных процентов m раз в году по номинальной процентной ставке i (m ) и непрерывном начислении процентов при постоянной интенсивности процентов δ в год:

(5.3)

. (5.4)

Формулы для наращенной суммы ренты можно получить непосредственно по определению согласно формуле (4.3). Например, для постоянной обычной p - срочной ренты при начислении процентов на члены ренты 1 раз в году в течение n лет получаем:

. (5.5)

S = A F (T ) = A (1 + i ) n =
(5.6)

Для других видов обычной ренты из (5.3) и (5.4), используя множители наращения
и
соответственно, получим:

(5.7)

(5.8)

В частности, при m = p (период начисления процентов равен периоду ренты) из (5.3) и (5.7) получаем

(5.9)

(5.10)

Если единицей измерения времени является 1 год, а R - это выплата за год (единицу времени), то множитель в формулах современной стоимости ренты, равный , называетсякоэффициентом дисконтирования ренты . Множитель в формулах наращенной суммы ренты, равный , называетсякоэффициентом наращения ренты . Из (5.1)-(5.10) можно получить коэффициенты наращения и дисконтирования всех рассмотренных видов обычной ренты. Рассмотрим некоторые соотношения между этими коэффициентами.

Согласно (5.1) и (5.5), коэффициенты дисконтирования и наращения обычной p – n лет равны соответственно

и
.

и
- это соответственно современная стоимость и наращенная сумма постоянной обычнойp – срочной ренты с ежегодной выплатой 1 д.е. равными долями p раз в году в размере в моменты времени
с начислением на члены ренты процентов 1 раз в году. Следовательно,
и
связаны соотношением (4.6):

= (1 + i ) n
.

Аналогичный смысл имеют коэффициенты дисконтирования и наращения других рассмотренных видов обычной ренты. Для этих рент имеем соотношения:

- годовая рента с начислением процентов 1 раз в год;

- p - m раз в год;

- p - срочная рента с непрерывным начислением процентов.

Коэффициенты дисконтирования и наращения годовой ренты при начислении процентов 1 раз в год

и

затабулированы и приводятся в приложениях финансовой литературы. Если применяется p – срочная рента с начислением процентов p раз в год (m = p ) по годовой номинальной ставке i (p ) , то за единицу измерения времени можно принять часть года. Тогда- выплата за единицу времени (постнумерандо),- процентная ставка за 1 единицу времени, срок ренты -np единиц времени. Коэффициенты дисконтирования и наращения такой ренты равны соответственно
и
. Из формул (5.9), (5.10) имеем

,
,

что позволяет для этой ренты использовать те же таблицы коэффициентов. Заметим, что если единицей измерения времени является 1 год, то коэффициенты дисконтирования и наращения этой ренты определяются как =
и=
и рассчитываются по формулам, полученным из (5.9), (5.10):

,
.

=
и
=
. (5.11)

Пример 5.1. В конце каждого месяца на сберегательный счет инвестируется 200 д.е. На поступающие платежи ежемесячно начисляют сложные проценты по годовой ставке 12 %. Какова величина вклада через 2 года? Какую сумму мог бы разместить инвестор на депозитный счет для получения такой же величины вклада через 2 года?

Взносы на сберегательный счет поступают в виде обычной p - срочной ренты с начислением процентов p раз в году в течение 2 лет. Здесь n = 2, p = 12,
= 0,12. Если за единицу измерения времени принять 1 месяц, то= 200 д.е. - выплата за единицу времени,== 0,01 - процентная ставка за 1 единицу времени, срок рентыnp = 24 единицы времени. По таблице коэффициентов наращения дискретных рент находим s 24, 0.01 = 26,97346485. Тогда наращенная сумма вклада через два года
= 200 s 24, 0.01 = 5394,69 (д.е.).

Сумма, которую мог бы разместить инвестор на депозитный счет для получения такой же величины вклада через 2 года - это современная стоимость ренты
= 200a 24,0.01 = 4248,68 (д.е.), где коэффициент дисконтирования a 24,0.01 = 21,2433873 определен по таблице коэффициентов. Так как
= 4248,68(1+0,01) 24 = 5394,69 (д.е.), то размещение суммы 4248,68 д.е. на депозитный счет для начисления на нее ежемесячно сложных процентов по годовой ставке 12 % позволит инвестору через два года получить ту же сумму вклада.

Замечание. Рассчитать коэффициенты дисконтирования
и наращения
, пользуясь приведенными формулами, и проверить соотношения (5.11). Объяснить, почему
и
можно найти в таблицах коэффициентов, а
и
- нет. На что может повлиять выбор единицы измерения времени?

Рассмотрим ренту пренумерандо . Связь между коэффициентами дисконтирования и наращения рент пренумерандо и постнумерандо следует из их определения. Срок дисконтирования каждого платежа ренты пренумерандо уменьшается, а срок наращения увеличивается на один период ренты по сравнению с обычной рентой. По - прежнему единицей измерения времени считаем 1 год. Если
и
- коэффициенты дисконтирования и наращенияp - срочной ренты пренумерандо (платежи поступают в начале каждого периода длиной ) при начислении на члены ренты процентов 1 раз в год, то справедливы соотношения:

=

=

= (1 + i ) n
.

Отсюда при p = 1 получаем соотношения для годовых рент:

=

=

= (1 + i ) n
.

При непрерывном начислении процентов для p - срочной ренты имеем соотношения:

=

.

Рассмотрим непрерывную ренту. Коэффициенты дисконтирования и наращения постоянной непрерывной ренты можно получить из формул для p - срочной ренты при
или по определению (формулы (4.9), (4.10)) для непрерывного равномерно выплачиваемого потока платежей с постоянной годовой интенсивностьюf (t ) = 1. Например, для постоянной непрерывной ренты при непрерывном начислении процентов по постоянной силе роста получаем:

,

где
- коэффициент дисконтирования обычнойp - срочной ренты при непрерывном начислении процентов. Заметим, что так как
, где
- коэффициент дисконтированияp - срочной ренты пренумерандо при непрерывном начислении процентов, то


.

Действительно, при непрерывно поступающих платежах различие между рентами пренумерандо и постнумерандо исчезает.

Коэффициент дисконтирования постоянной непрерывной ренты при начислении процентов 1 раз в год получим по определению:

Коэффициенты наращения непрерывных рент можно найти из равенств вида (4.6):

=
,

=
.

Соотношения между коэффициентами дисконтирования рассмотренных трех видов рент - обычной, пренумерандо и непрерывной - можно установить из следующих соображений. Так как
, гдеi (p ) - эквивалентная годовая номинальная процентная ставка, то

С другой стороны,


.

Следовательно


, (5.12)

где
,
- коэффициенты дисконтирования обычной годовой ренты с начислением процентов 1 раз в год и постоянной непрерывной ренты при непрерывном начислении процентов. Равенства (5.12) можно продолжить для ренты пренумерандо, если учесть соотношения коэффициентов дисконтирования обеих рент:

и
.

=
=
. (5.13)

где
- эквивалентная учетная ставка. Из (5.12), (5.13) получаем

где
- эквивалентная номинальная учетная ставка. Каждое выражение в этом равенстве - современная стоимость процентов, выплачиваемых по займу 1 д.е. на протяженииn лет в соответствии с различными способами выплаты процентов.

Аналогичные соотношения можно получить и для коэффициентов наращения рент.

Если полагают, что срок ренты n = ∞, то ренту называют вечной . Наращенная сумма вечной ренты бесконечна. Однако современную величину такой ренты можно найти. Для обычной вечной p - срочной ренты с начислением процентов 1 раз в год получаем при n → ∞:

Для такой же ренты пренумерандо

Кроме того,

Таким образом,

,
,
. (5.15)

Если вечная рента является годовой (p = 1), то имеем

,
,
. (5.16)

Если начало ренты, т.е. начало ее первого периода, переносится в будущее на t единиц времени относительно текущего момента t = 0, то такую ренту называют отсроченной . Современная стоимость отсроченной ренты A t определяется следующим образом. Согласно определению современной стоимости потока платежей,

где
,
,
- дисконтные множителиk - го платежа на временных отрезках , [t , t k ], соответственно. Так как
, тоA -стоимость ренты, рассчитанная на момент начала ее первого периода, т.е. на момент начала неотсроченной ренты. Следовательно, A - это современная стоимость неотсроченной ренты. Таким образом, современная стоимость отсроченной ренты определяется путем дисконтирования по процентной ставке ренты в течение времени t современной стоимости A неотсроченной ренты:

, (5.17)

Пример 5.2. По контракту произведенная продукция стоимостью 2 млн. д.е. оплачивается в рассрочку в конце каждого квартала в течение пяти лет с начислением сложных процентов раз в год по ставке 10% годовых. Найти величину отдельного взноса, если начало оплаты продукции перенесено на полгода после подписания контракта.

Если начало отсчета времени t = 0 – это момент подписания контракта, а единица измерения времени – 1 год, то здесь n = 5, p = 4, i = 0,1, t = 0,5. Согласно формуле (5.17), стоимость потока платежей по оплате продукции на момент подписания контракта равна
=
, гдеA t = 2 млн. д.е., A - современная стоимость неотсроченной обычной p - срочной ренты с начислением процентов 1 раз в году в течение n лет. Согласно (5.1),
. Из формул дляA t и A находим величину отдельного взноса = 133432,20 д.е. против
133432,20 = 127222,61 д.е., если бы начало оплаты продукции не откладывалось.

Замечание. Из определения срока ренты следует, что если
- период ренты, то срок рентыn (лет) является числом, кратным , т.е.
, гдеm – целое положительное число. Известно, что всякое положительное рациональное число можно представить в виде , гдеm , p – целые положительные числа, а всякое иррациональное число можно с любой степенью точности заменить рациональным числом . Это означает, что если срок рентыn не является целым, то всегда можно (точно или с любой степенью точности) представить n в виде целого числа периодов некоторой p – срочной ренты и использовать связь коэффициентов дисконтирования и наращения рент:
и
. Есливыбирается в качестве единицы измерения времени, то используются соотношения:
=
и
=
. Таким образом, все полученные формулы для коэффициентов дисконтирования и наращения рент справедливы для
, т.е. для всех неотрицательных значенийn , не только целых.

Свойства коэффициентов наращения и дисконтирования ренты.

Рассмотрим зависимость коэффициентов дисконтирования и наращения ренты от срока ренты и процентной ставки. Поскольку характер зависимости не должен зависеть от числа платежей в году, рассмотрим годовую обычную ренту с начислением процентов 1 раз в год.

1) i = 0.

Имеем
,
.

Ситуацию можно рассматривать как беспроцентный долг, выданный в сумме n и возвращаемый равными долями в течение n лет.

2) Установим зависимость от i коэффициента наращения ренты
.

Очевидно,
- возрастающая функцияi , что следует из свойств наращенной суммы разового платежа. Действительно, так как
и
, то
- возрастающая выпуклая функция аргументаi (рис. 1.5.1).

3) Установим зависимость от i коэффициента дисконтирования ренты
.

.

Очевидно,
- убывающая функцияi , что следует из свойств современной стоимости разового платежа. Действительно, так как
и
, то
- убывающая выпуклая функция аргументаi (рис. 1.5.2).

4) Установим зависимость от n коэффициента наращения ренты
.

, где
.

Т

s n,i

ак как
и
, то
- возрастающая выпуклая функция аргументаn (рис. 1.5.3).

5) Установим зависимость от n коэффициента дисконтирования ренты
.

, где
.

Тема: Математические основы финансового менеджмента

Вопросы:

    Способы начисления процентов

    Сущность простых и сложных процентов

    Методы оценки аннуитетов

Ответы:

1.Способы начисления процентов

Процента – это доход от предоставления капитала в долг в различных формах либо от инвестиций производственного или финансового характера.

Наращение первоначальной суммы долга – это увеличение суммы долга за счёт присоединения начисленных процентов (дохода).

Коэффициент наращения – это величина, показывающая во сколько раз вырос первоначальный капитал.

Период начисления – это промежуток времени, за который начисляются проценты.

Существует 2 способа определения и начисления процентов:

    Дискурсивный способ начисления процентов – проценты начисляются в конце каждого интервала, хи величина определяется исходя из величины предоставляемого капитала, дискурсивная процентная ставка представляет собой выраженное в процентах отношение суммы начисленного, за определённый интервал, дохода к сумме, имеющейся на начало данного интервала.

    Антисипотивный способ начисления процентов – проценты начисляются в начале каждого интервала, сумма процентных денег определяется исходя из наращенной сумме. Процентной ставкой будет, выраженное в процентах отношение суммы дохода, выплачиваемого за определённый период к величине наращённое суммы, полученной по прошествии этого интервала.

В мировой практике дискурсивный способ наращения процентов получил наибольшее распространение, а антисипотивный способ наращения процентов рассматривается как банковское дисконтирования или банковский учёт векселей, и обычно применяется в периоды высоких темпов инфляции.

2.Сущность простых и сложных процентов

Известны 2 основные схемы дискретного начисления процентов:

    Схема простых процентов предполагает неизменность базы с которой происходит исчисление. Процесс дисконтирования по схеме простых процентов определяется по формуле:

    Схема сложных процентов предполагает изменность за счёт капитализации процентов начисленных но не выплаченных к основной сумме. Наращение сложных процентов:

Мультиплицирующий множитель в процессе наращения для определения бедующей стоимости, его значения табулированы.

Процесс в котором заданы исходная сумма и ставка называется процессом наращения, искомая величина – наращенной суммой, а используемая в операции ставка – ставкой наращения.

Процесс в котором заданы ожидаемая в будущем к получению сумма и ставка называется процессом дисконтирования , искомая величина – приведённой суммой , а используемая в операции ставка – ставкой дисконтирования.

Процесс дисконтирования по простым процента осуществляется по формуле:

Процесс дисконтирования по схеме сложных процентов осуществляется по формуле:

Дисконтирующий множитель ля определения настоящей суммы, его значения табулированы.

4.Методы оценки аннуитетов

Поток однонаправленных платежей с равными интервалами между последовательными платежами в течении определённого количества лет называется аннуитетом (финансовой рентой).

Примеры аннуитетов: пенсионный фонд, погашение заёмщиком кредита.

Оценка денежного потока может выполняться в рамках решения задач:

    Прямой – т.е. производится оценка с позиции будущего и реализуется схема наращения (Схема наращения аннуитета постнумерандо.

А-сумма аннуитета

FM3(i;n) – мультиплицирующий множитель для аннуитета в процессе наращения, значения так же табулированы

Схема наращения для аннуитета пренумеранда реализуется по формуле

FV=A*FM3(i;n)*(1+i)

    Обратной, т.е. проводится оценка с позиции настоящего, реализуется схема дисконтирования.

Процесс дисконтирования для аннуитета постнумеранда осуществляется по формуле

A*FM4(i;n) –дисконтирующий множитель для аннуитета, его значения так же табулированы.

Процент дисконтирования для пренумерендо: =A*FM4(i;n)*(1+i)

В условиях рыночной экономики любое взаимодействие лиц, фирм и предприятий с целью получения прибыли называется сделкой. При кредитных сделках прибыль представляет собой величину дохода от предоставления денежных средств в долг, что на практике реализуется за счет начисления процентов (процентной ставки – i). Проценты зависят от величины предоставляемой суммы, срока ссуды, условий начисления и т. д.

Важнейшее место в финансовых сделках занимает фактор времени (t). С временным фактором связан принцип неравноценности и неэквивалентности вложений. Для того чтобы определить изменения, происходящие с исходной суммой денежных средств (P), необходимо рассчитать величину дохода от предоставления денег в ссуду, вложения их в виде вклада (депозита), инвестированием их в ценные бумаги и т. д.

Процесс увеличения суммы денег в связи с начислением процентов (i) называют наращением, или ростом первоначальной суммы (P). Таким образом, изменение первоначальной стоимости под влиянием двух факторов: процентной ставки и времени называется наращенной стоимостью (S).

Наращенная стоимость может определяться по схеме простых и сложных процентов. Простые проценты используются в случае, когда наращенная сумма определяется по отношению к неизменной базе, то есть начисленные проценты погашаются (выплачиваются) сразу после начисления (таким образом, первоначальная сумма не меняется); в случае, когда исходная сумма (первоначальная) меняется во временном интервале, имеют дело со сложными процентами.

При начислении простых процентов наращенная сумма определяется по формуле


S = P (1 + i t), (1)

где S – наращенная сумма (стоимость), руб.; P – первоначальная сумма (стоимость), руб.; i – процентная ставка, выраженная в коэффициенте; t – период начисления процентов.

S = 10 000 (1+ 0,13 · 1) = 11 300, руб. (сумма погашения кредита);

ΔР = 11 300 – 10 000 = 1 300, руб. (сумма начисленных процентов).

Определить сумму погашения долга при условии ежегодной выплаты процентов, если банком выдана ссуда в сумме 50 000 руб. на 2 года, при ставке – 16 % годовых.

S = 50 000 (1+ 0,16 · 2) = 66 000, руб.

Таким образом, начисление простых процентов осуществляется в случае, когда начисленные проценты не накапливаются на сумму основного долга, а периодически выплачиваются, например, раз в год, полугодие, в квартал, в месяц и т. д., что определяется условиями кредитного договора. Также на практике встречаются случаи, когда расчеты производятся за более короткие периоды, в частности на однодневной основе.

В случае, когда срок ссуды (вклада и т. д.) менее одного года, в расчетах необходимо скорректировать заданную процентную ставку в зависимости от временного интервала. Например, можно представить период начисления процентов (t) в виде отношения , где q – число дней (месяцев, кварталов, полугодий и т. д.) ссуды; k – число дней (месяцев, кварталов, полугодий и т. д.) в году.

Таким образом, формула (1) изменяется и имеет следующий вид:

S = P (1 + i ). (2)

Банк принимает вклады на срочный депозит на срок 3 месяца под 11 % годовых. Рассчитать доход клиента при вложении 100 000 руб. на указанный срок.

S = 100 000 (1+ 0,11 · ) = 102 749,9, руб.;

ΔР = 102 749,9 – 100 000 = 2 749,9, руб.

В зависимости от количества дней в году возможны различные варианты расчетов. В случае, когда за базу измерения времени берут год, условно состоящий из 360 дней (12 месяцев по 30 дней), исчисляют обыкновенные, или коммерческие проценты. Когда за базу берут действительное число дней в году (365 или 366 – в високосном году), говорят о точных процентах.

При определении числа дней пользования ссудой также применяется два подхода: точный и обыкновенный. В первом случае подсчитывается фактическое число дней между двумя датами, во втором – месяц принимается равным 30 дням. Как в первом, так и во втором случае, день выдачи и день погашения считаются за один день. Также существуют случаи, когда в исчислении применяется количество расчетных или рабочих банковских дней, число которых в месяц составляет 24 дня.

Таким образом, выделяют четыре варианта расчета:

1) обыкновенные проценты с точным числом дней ссуды;

2) обыкновенные проценты с приближенным числом дней ссуды;

3) точные проценты с приближенным числом дней ссуды;

4) точные проценты с банковским числом рабочих дней.

При этом необходимо учесть, что на практике день выдачи и день погашения ссуды (депозита) принимают за один день.

Ссуда выдана в размере 20 000 руб. на срок с 10.01.06 до 15.06.06 под 14 % годовых. Определить сумму погашения ссуды.

1. Обыкновенные проценты с точным числом дней ссуды:

156=21+28+31+30+31+15;

S = 20 000 (1+0,14 · ) =21 213,3, руб.

2. Обыкновенные проценты с приближенным числом дней ссуды:

S = 20 000 (1+0,14 · ) =21 205,6, руб.

3. Точные проценты с приближенным числом дней ссуды:

S = 20 000 (1+0,14 · ) =21 189,0, руб.

4. Точные проценты с банковским числом рабочих дней:

S = 20 000 (1+0,14 · ) =21 516,7, руб.

Данные для расчета количества дней в периоде представлены в прил. 1, 2.

Как сказано выше, кроме начисления простых процентов применяется сложное начисление, при котором проценты начисляются несколько раз за период и не выплачиваются, а накапливаются на сумму основного долга. Этот механизм особенно эффективен при среднесрочных и долгосрочных кредитах.

После первого года (периода) наращенная сумма определяется по формуле (1), где i будет являться годовой ставкой сложных процентов. После двух лет (периодов) наращенная сумма S 2 составит:

S 2 = S 1 (1 + it) = P (1 + it) · (1 + it) = P (1 + it) 2 .

Таким образом, при начислении сложных процентов (после n лет (периодов) наращения) наращенная сумма определяется по формуле

S = P (1 + i t) n , (3)

где i – ставка сложных процентов, выраженная в коэффициенте; n – число начислений сложных процентов за весь период.

Коэффициент наращения в данном случае рассчитывается по формуле


Кн = (1 + i t) n , (4)

где Кн – коэффициент наращения первоначальной стоимости, ед.

Вкладчик имеет возможность поместить денежные средства в размере 75 000 руб. на депозит в коммерческий банк на 3 года под 10 % годовых.

Определить сумму начисленных процентов к концу срока вклада, при начислении сложных процентов.

S = 75 000 (1+ 0,1 · 1) 3 = 99 825, руб.

ΔР = 24 825, руб.

Таким образом, коэффициент наращения составит:

Кн = (1+ 0,1 · 1) 3 = 1,331

Следовательно, коэффициент наращения показывает, во сколько раз увеличилась первоначальная сумма при заданных условиях.

Доля расчетов с использованием сложных процентов в финансовой практике достаточно велика. Расчеты по правилу сложных процентов часто называют начисление процентов на проценты, а процедуру присоединения начисленных процентов – их реинвестированием или капитализацией.


Рис. 1. Динамика увеличения денежных средств при начислении простых и сложных процентов

Из-за постоянного роста базы вследствие реинвестирования процентов рост первоначальной суммы денег осуществляется с ускорением, что наглядно представлено на рис. 1.

В финансовой практике обычно проценты начисляются несколько раз в году. Если проценты начисляются и присоединяются чаще (m раз в год), то имеет место m-кратное начисление процентов. В такой ситуации в условиях финансовой сделки не оговаривают ставку за период, поэтому в финансовых договорах фиксируется годовая ставка процентов i, на основе которой исчисляют процентную ставку за период (). При этом годовую ставку называют номинальной, она служит основой для определения той ставки, по которой начисляются проценты в каждом периоде, а фактически применяемую в этом случае ставку (() mn) – эффективной, которая характеризует полный эффект (доход) операции с учетом внутригодовой капитализации.

Наращенная сумма по схеме эффективных сложных процентов определяется по формуле

S = P (1+ ) mn , (5)

где i – годовая номинальная ставка, %; (1+ ) mn – коэффициент наращения эффективной ставки; m – число случаев начисления процентов за год; mn – число случаев начисления процентов за период.

S = 20 000 (1+ ) 4·1 = 22 950, руб.

Следует отметить, что при периоде, равным 1 году, число случаев начисления процентов за год будет соответствовать числу случаев начисления процентов за весь период. Если, период составляет более 1 года, тогда n (см. формулу (3)) – будет соответствовать этому значению.

S = 20 000 (1+ ) 4·3 = 31 279, 1 , руб.

Начисление сложных процентов также применяется не только в случаях исчисления возросшей на проценты суммы задолженности, но и при неоднократном учете ценных бумаг, определении арендной платы при лизинговом обслуживании, определении изменения стоимости денег под влиянием инфляции и т. д.

Как говорилось выше, ставку, которая измеряет относительный доход, полученный в целом за период, называют эффективной. Вычисление эффективной процентной ставки применяется для определения реальной доходности финансовых операций. Эта доходность определяется соответствующей эффективной процентной ставкой.

I эф = (1+ ) mn – 1 . (6)

Кредитная организация начисляет проценты на срочный вклад, исходя из номинальной ставки 10 % годовых. Определить эффективную ставку при ежедневном начислении сложных процентов.

i = (1+ ) 365 – 1 = 0,115156, т. е. 11 %.

Реальный доход вкладчика на 1 руб. вложенных средств составит не 10 коп. (из условия), а 11 коп. Таким образом, эффективная процентная ставка по депозиту выше номинальной.

Банк в конце года выплачивает по вкладам 10% годовых. Какова реальная доходность вкладов при начислении процентов: а) ежеквартально; б) по полугодиям.

а) i = (1+ ) 4 – 1 = 0,1038, т. е. 10,38 %;

б) i = (1+ ) 2 – 1 = 0,1025, т. е. 10,25 %.

Расчет показывает, что разница между ставками незначительна, однако начисление 10 % годовых ежеквартально выгодней для вкладчика.

Расчет эффективной процентной ставки в финансовой практике позволяет субъектам финансовых отношений ориентироваться в предложениях различных банков и выбрать наиболее приемлемый вариант вложения средств.

В кредитных соглашениях иногда предусматривается изменение во времени процентной ставки. Это вызвано изменением контрактных условий, предоставлением льгот, предъявлением штрафных санкций, а также изменением общих условий совершаемых сделок, в частности, изменение процентной ставки во времени (как правило, в сторону увеличения) связано с предотвращением банковских рисков, возможных в результате изменения экономической ситуации в стране, роста цен, обесценения национальной валюты и т. д.

Расчет наращенной суммы при изменении процентной ставки во времени может осуществляться как начислением простых процентов, так и сложных. Схема начисления процентов указывается в финансовом соглашении и зависит от срока, суммы и условий операции.

Пусть процентная ставка меняется по годам. Первые n 1 лет она будет равна i 1 , n 2 – i 2 и т. д. При начислении на первоначальную сумму простых процентов необходимо сложить процентные ставки i 1 , i 2 , i n , а при сложных – найти их произведение.

При начислении простых процентов применяется формула

S = P (1+i 1 t 1 + i 2 t 2 + i 3 t 3 + i n t n) , (7)

где i n – ставка простых процентов; t n – продолжительность периода начисления.

В первый год на сумму 10 000 руб. начисляются 10 % годовых, во второй – 10,5 % годовых, в третий – 11 % годовых. Определить сумму погашения, если проценты выплачиваются ежегодно.

S = 10 000 (1+0,10 · 1 +0,105 · 1 + 0,11 · 1)=13 150, руб.;

ΔР = 3 150, руб.

При начислении сложных процентов применяется формула

S = P(1+i 1 t 1)·(1+ i 2 t 2)·(1+ i 3 t 3)·(1+ i n t n) (8)

где i n – ставка сложных процентов; t n – продолжительность периода ее начисления.

В первый год на сумму 10 000 руб. начисляются 10 % годовых, во второй – 10,5 % годовых, в третий – 11 % годовых. Определить сумму погашения, если проценты капитализируются.

S = 10 000 (1+0,10 · 1)·(1 +0,105 · 1)·(1 + 0,11 · 1)= 13 492, 05, руб.


Приведенные примеры подтверждают тот факт, что начисление простых процентов связано с определением наращенной суммы по отношению к неизменной базе, т. е. каждый год (период) проценты начисляются на одну и ту же первоначальную стоимость. Если рассмотреть пример 10, то в этом случае наращенная стоимость составит:

– за первый год: S 1 = 10 000 (1+0,10 · 1) = 11 000, руб.;

ΔР 1 = 1 000, руб.;

– за второй год: S 2 = 10 000 (1+0,105 · 1) = 11 050, руб.;

ΔР 2 = 1 050, руб.;

– за третий год: S 3 = 10 000 (1+0,11 · 1) = 11 100, руб.;

ΔР 3 = 1 100, руб.

Таким образом, сумма процентов за 3 года составит:

ΔР = 1 000+1 050+1 100 = 3 150, руб. (см. пример 10).

В случае начисления сложных процентов, исходная сумма меняется после каждого начисления, так как проценты не выплачиваются, а накапливаются на основную сумму, т. е. происходит начисление процентов на проценты. Рассмотрим пример 11:

– в первом году: S 1 = 10 000 (1+0,10 · 1) = 11 000, руб.;

– во втором году: S 2 = 11000 (1+0,105 · 1) = 12 100, руб.;

– в третьем году: S 3 = 12100 (1+0,11 · 1) = 13 431, руб.

Таким образом, сумма процентов за 3 года составит: i 3 = 3 431, руб. (см. пример 10).

При разработке условий контрактов или их анализе иногда возникает необходимость в решении обратных задач – определение срока операции или уровня процентной ставки.

Формулы для расчета продолжительности ссуды в годах, днях и т. д. можно рассчитать, преобразуя формулы (1) и (5).

Срок ссуды (вклада):

t = · 365 . (9)

Определить на какой срок вкладчику поместить 10 000 руб. на депозит при начислении простых процентов по ставке 10 % годовых, чтобы получить 12 000 руб.

t = () · 365 = 730 дней (2 года).

Клиент имеет возможность вложить в банк 50 000 руб. на полгода. Определить процентную ставку, обеспечивающую доход клиента в сумме 2 000 руб.


t = () = 0,08 = 8 % годовых

Аналогично определяется необходимый срок окончания финансовой операции и ее протяженность, либо размер требуемой процентной ставки при начислении сложных процентов.

Для упрощения расчетов значения коэффициента (множитель) наращения представлены в прил. 3.