Бухгалтерский учет и отчетность лекции. Краткий курс лекций по дисциплине «бухгалтерский учет. Долгосрочные арендуемые основные средства
 - средства труда, договор аренды по которым предусматривает переход их собственности к арендатору по истечению срока

Бухгалтерский учет и отчетность лекции. Краткий курс лекций по дисциплине «бухгалтерский учет. Долгосрочные арендуемые основные средства - средства труда, договор аренды по которым предусматривает переход их собственности к арендатору по истечению срока

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«УДМУРТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Биолого-химический факультет

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

ПО ДИСЦИПЛИНЕ

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

БИОЛОГИЧЕСКИХ ПРОЦЕССОВ

Направление подготовки

Направление подготовки 020400 Биология

Наименование магистерской программы

"Биология" (Ботаника) 020421 м

"Биология" (Иммунобиотехнология) 020422 м

"Биология" (Биология клетки) 020423 м

Место дисциплины в структуре ООП магистратуры. Компетенции обучающегося, формируемые в результате освоения дисциплины. Цель освоения дисциплины. Структура дисциплины по видам учебной работы, соотношение тем и формируемых компетенций. Содержание дисциплины.

5.1 Темы лекционных занятий и их аннотации

5.2. Планы практических занятий.

5.3. Планы лабораторного практикума.

5.4. Программа самостоятельной работы студентов.

Образовательные технологии. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации . Учебно-методическое и информационное обеспечение дисциплины. Материально-техническое обеспечение дисциплины.

ПОРЯДОК УТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ

Разработчик рабочей программы дисциплины

Экспертиза рабочей программы

Утверждение рабочей программы дисциплины

Иные документы об оценке качества рабочей программы дисциплины

(при их наличии - ФЭПО, отзывы работодателей, магистрантов и пр.)

Документ об оценке качества (наименование)

Дата документа

1 . МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП МАГИСТРАТУРЫ

Дисциплина входит в цикл базовую часть математического и естественно-научного цикла ООП магистратуры.

Дисциплина адресована 020400 Биология (квалификация (степень) "магистр"), первый год обучения.

Изучению курса предшествуют следующие дисциплины: информатика, дисциплины естественнонаучного цикла.

Для успешного освоения дисциплины должны быть сформированы компетенции:

способен к адаптации и повышению своего научного и культурного уровня (ОК-3);

Успешное освоение курса позволяет перейти к изучению дисциплин: теоретическая биология, синергетика, с овременные проблемы биологии, других дисциплин математического и естественно-научного цикла ООП магистратуры, выполнению магистерской работы .

Программа курса построена по блочно-модульному принципу, в ней выделены разделы:

    Понятие о дифференциальном и интегральном исчислении. Цели моделирования. Базовые понятия. Модели, описываемые автономным дифференциальным уравнением Дискретные модели Модели, описываемые системами двух автономных дифференциальных уравнений Устойчивость стационарных состояний нелинейных систем. Триггерные системы. Колебательные системы.

2 . КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ

В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

· самостоятельно анализирует имеющуюся информацию, выявляет фундаментальные проблемы, ставит задачу и выполняет полевые, лабораторные биологические исследования при решении конкретных задач по специализации с использованием современной аппаратуры и вычислительных средств, демонстрирует ответственность за качество работ и научную достоверность результатов (ПК-3);

· творчески применяет современные компьютерные технологии при сборе, хранении, обработке, анализе и передаче биологической информации (ПК-6);

· самостоятельно использует современные компьютерные технологии для решения научно-исследовательских и производственно-технологических задач профессиональной деятельности , для сбора и анализа биологической информации (ПК-13);

В результате освоения дисциплины обучающийся должен:

знать:

· о методах моделирования биологических систем с последующим их анализом с использованием дифференциального и интегрального исчисления.

уметь:

· уметь применять полученные знания в практической работе ;

· грамотно представлять результаты, выполненных модельных расчетов.

Владеть:

· навыками интегрального и дифференциального исчисления;

· навыками работы с персональным компьютером при использовании доступных программных продуктов по численному моделированию биологических систем.

3 . ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ БИОЛОГИЧЕСКИХ ПРОЦЕССОВ

является:

дать некоторые базовые знания и представления о возможностях практики численных методов математического анализа, математического моделирования, классификации математических моделей и области их применимости, показать, на какие принципиальные качественные вопросы может ответить математическая модель, в виде которой формализованы знания о биологическом объекте. Это достигается путем включения в курс базовых вопросов интегрального и дифференциального исчисления, основ математического аппарата качественной теории дифференциальных уравнений. На базе этих знаний рассматриваются основные типы временного и пространственного динамического поведения, присущие биологическим системам разного уровня. Возможности математического моделирования иллюстрируются примерами конкретных моделей, которые можно считать классическими.

Задачи освоения дисциплины:

сформировать представления о применимости численных методов математического анализа применительно к математическому моделированию биологических систем;

познакомить с конкретными математическими моделями, которые биолог-исследователь может применять (адаптировать) к своим исследованиям;

расширить знания по использованию программных средств при моделировании биологических процессов.

4. СТРУКТУРА ДИСЦИПЛИНЫ ПО ВИДАМ УЧЕБНОЙ РАБОТЫ,

СООТНОШЕНИЕ ТЕМ И ФОРМИРУЕМЫХ КОМПЕТЕНЦИЙ

Тема 1.2.

проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

Тема 1.3. (2 часа) Теоретическая часть.

Перечень заданий, задач, выносимых на лабораторную работу:

Тема 1.4. (2 часа) Теоретическая часть.

Перечень заданий, задач, выносимых на лабораторную работу: проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

Тема 1.5. (3 часа) Теоретическая часть.

Перечень заданий, задач, выносимых на лабораторную работу: проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

Тема 1часа) Теоретическая часть.

Перечень заданий, задач, выносимых на лабораторную работу: проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

Тема 1.7. (2 часа) Теоретическая часть.

Перечень заданий, задач, выносимых на лабораторную работу: проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

Тема 1.8. (2 часа) Теоретическая часть.

Перечень заданий, задач, выносимых на лабораторную работу: проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

Тема 1.9. (2 часа) Теоретическая часть.

Перечень заданий, задач, выносимых на лабораторную работу: проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

Тема 1.10. (2 часа) Теоретическая часть. Исследование устойчивости стационарных состоя ний нелинейных систем второго порядка. Классическая система В. Вольтерра. Аналитическое исследование (определение стационарных состояний и их устойчивости) и построение фазовых и кинетических портретов. Использование пакета аналитических вычислений Maxima.

Перечень заданий, задач, выносимых на лабораторную работу: проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

Перечень заданий, задач, выносимых на лабораторную работу: проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

Тема 1.часа) Теоретическая часть.

Перечень заданий, задач, выносимых на лабораторную работу: проверочная работа по материалу предыдущего занятия, теоретическое введение по теме занятий, выполнение практических заданий.

5.4. Программа самостоятельной работы магистрантов

Структура СРС

Код формируемой компетенции

Тема

Форма

Объем

учебной работы

(часов)

Учебно-методические материалы

ПК-3, ПК-6, ПК-13

Тема 1.1.

Понятие модели. Объекты, цели и методы моделирования. Модели в разных науках. Компьютерные и математические модели. История первых моделей в биологии. Современная классификация моделей биологических процессов. Регрессионные, имитационные, качественные модели. Принципы имитационного моделирования и примеры моделей. Специфика моделирования живых систем.

решение задач

СРС без участия преподавателя

ПК-3, ПК-6, ПК-13

Тема 1.2.

Понятие о производной и способах ее нахождения (правила дифференцирования). Интеграл и методы нахождения интегралов. Решение задач по данной теме.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы

ПК-3, ПК-6, ПК-13

Тема 1.3.

Составление (вывод) дифференциального уравнения. Некоторые приёмы решения однородных и неоднородных дифференциальных уравнений. Решение методом разделяющихся переменных. Решение линейного дифференциального уравнения общего вида методом Лагранжа. Решение задач по данной теме.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы

ПК-3, ПК-6, ПК-13

Тема 1.4.

Составление (вывод) дифференциального уравнения. Понятие решения дифференциального уравнения. Решение методом разделяющихся переменных. Решение линейного дифференциального уравнения общего вида. Стационарное состояние. Устойчивость стационарных состояний (случай одного уравнения): определения, аналитический метод определения типа устойчивости. Формула Тейлора. Решение задач по данной теме.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы

ПК-3, ПК-6, ПК-13

Тема 1.5.

Анализ некоторых моделей роста популяций. Модель Мальтуса. Логистическая модель Ферхюльста. Модель проточного культиватора. Решение задач по данной теме.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы

ПК-3, ПК-6, ПК-13

Тема 1.6.

Разностные модели роста популяций. Анализ разностной модели Мальтуса (нахождение стационарных состояний и их анализ на устойчивость). Дискретное логистическое уравнение Ферхюльста и его ограниченность для биологических систем. Анализ дискретного логистического уравнения Риккера (нахождение стационарных состояний и их анализ на устойчивость). Качественный анализ разностных моделей роста популяций с использованием диаграммы (лестницы) Ламерея. Решение задач по данной теме.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы

ПК-3, ПК-6, ПК-13

Тема 1.7.

Система двух автономных обыкновенных линейных дифференциальных уравнений (ОДУ). Решение системы двух линейных автономных ОДУ. Типы особых точек. Решение задач по данной теме. Использование пакета аналитических вычислений Maxima.

решение задач

СРС без участия преподавателя

ПК-3, ПК-6, ПК-13

Тема 1.8.

Система двух автономных обыкновенных линейных дифференциальных уравнений. Фазовая плоскость. Изоклины. Построение фазовых портретов. Кинетические кривые. Решение задач по данной теме.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы.

ПК-3, ПК-6, ПК-13

Тема 1.9.

Анализ некоторых моделей, описываемых системой двух автономных обыкновенных линейных дифференциальных уравнений. Анализ кинетической модели системы линейных дифференциальных уравнений, описывающих химические реакции. Решение задач по данной теме. Использование пакета аналитических вычислений Maxima.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы.

ПК-3, ПК-6, ПК-13

Тема 1.10.

Исследование устойчивости стационарных состояний нелинейных систем второго порядка. Классическая система В. Вольтерра. Аналитическое исследование (определение стационарных состояний и их устойчивости) и построение фазовых и кинетических портретов. Использование пакета аналитических вычислений Maxima.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы

ПК-3, ПК-6, ПК-13

Тема 1.11.

Триггерные системы. Конкуренция. Аналитическое исследование (определение стационарных состояний и их устойчивости) и построение фазовых и кинетических портретов. Решение задач по данной теме.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы.

ПК-3, ПК-6, ПК-13

Тема 1.12.

Колебательные системы. Локальная модель брюсселятора. Решение задач по данной теме. Использование пакета аналитических вычислений Maxima.

решение задач

СРС без участия преподавателя

Смотри список учебно-методической литературы.

Подготовка к лабораторным работам – 12 работ - 48 часов

Результаты всех видов СРС оцениваются в баллах и являются основой БРС.

При выполнении СРС используются учебно-методические материалы, указанные в соответствующем разделе (см. таблицу Структура СРС )

График контроля СРС

Условные обозначения: кр – контрольная работа , к – коллоквиум , р – реферат, д – доклад, ди – деловая игра , рз – решение задач, кур – курсовая работа , лр – лабораторная работа, дз – домашнее задание

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При проведении занятий и организации самостоятельной работы магистрантов используются традиционные технологии сообщающего обучения, предполагающие передачу информации в готовом виде, формирование учебных умений по образцу: теоретическая часть лабораторной работы строится как: лекция-изложение, лекция-объяснение .

Использование традиционных технологий обеспечивает формирование когнитивного (знаниевого) компонента профессиональных компетенций биолога-исследователя.

В процессе изучения теоретических разделов дисциплины, выполнения практических заданий, используются новые образовательные технологии обучения: лекция-визуализация .

При проведении лабораторных занятий используются:

Понятие модели. Объекты, цели и методы моделирования. Модели в разных науках. Физические и математические модели. История первых моделей в биологии. Современная классификация моделей биологических процессов: регрессионные , имитационные, качественные модели. Примеры различных моделей, применямых в Вашей области научных интересов. Принципы имитационного моделирования и примеры моделей. Специфика моделирования живых систем.

Понятие о производной и способах ее нахождения (правила дифференцирования). Интеграл и методы нахождения интегралов. Решение задач по данной теме.

Составление (вывод) дифференциального уравнения. Некоторые приёмы решения однородных и неоднородных дифференциальных уравнений. Решение методом разделяющихся переменных. Решение линейного дифференциального уравнения общего вида методом Лагранжа. Решение задач по данной теме.

Методы исследования динамических систем. Стационарное состояние. Формула Тейлора. Устойчивость стационарных состояний (случай одного уравнения): понятие об устойчивости, аналитический метод определения типа устойчивости (метод Ляпунова), графический метод определения типа устойчивости. Решение задач по данной теме.

Анализ некоторых моделей роста популяций. Модели Мальтуса. Логистическая модель Ферхюльста. Модель проточного культиватора. Решение задач по данной теме.

Разностные модели роста популяций. Анализ разностной модели Мальтуса (нахождение стационарных состояний и их анализ на устойчивость). Дискретное логистическое уравнение Ферхюльста и его ограниченность для биологических систем. Анализ дискретного логистического уравнения Риккера (нахождение стационарных состояний и их анализ на устойчивость). Качественный анализ разностных моделей роста популяций с использованием диаграммы (лестницы) Ламерея. Решение задач по данной теме.

Анализ моделей, описываемых системой двух автономных обыкновенных линейных дифференциальных уравнений. Решение системы двух линейных автономных ОДУ. Анализ устойчивости поведения данных моделей вблизи особых точек. Типы особых точек. Решение задач по данной теме.

Качественный метод анализа моделей, описываемых системой двух автономных обыкновенных линейных дифференциальных уравнений. Фазовая плоскость. Изоклины. Построение фазовых портретов. Кинетические кривые. Решение задач по данной теме.

Анализ некоторых моделей, описываемых системой двух автономных обыкновенных линейных дифференциальных уравнений. Анализ кинетической модели системы линейных химических реакций.

Исследование устойчивости стационарных состояний нелинейных систем второго порядка. Метод Ляпунова линеаризации систем в окрестности стационарного состояния. Примеры исследования устойчивости стационарных состояний моделей биологических систем. Анализ кинетического уравнения Лотки (химическая реакция). Классическая система В. Вольтерра. Аналитическое исследование (определение стационарных состояний и их устойчивости) и построение фазовых и кинетических портретов.

Триггерные системы. Конкуренция. Аналитическое исследование (определение стационарных состояний и их устойчивости) и построение фазовых и кинетических портретов.

Колебательные системы. Локальная модель брюсселятора.

Основной технологией оценки уровня сформированности компетенции(й) является: балльно-рейтинговая система оценки успеваемости студентов (Приказ /01-04 "О введении "Порядка реализации балльно-рейтинговой системы оценки учебной работы обучающихся в ФГБОУ ВПО "УдГУ").

Общее количество баллов = 100 баллов.

Посещение занятий и работа магистранта на самом занятии оценивается до 15 баллов.

Проверочная контрольная работа в начале занятия оценивается до 30 б.

Домашнее задание оценивается до 15 б.

Число баллов, выделяемое на зачет до 40 баллов

Дисциплина считается освоенной, если на этапе промежуточной аттестации обучающийся набрал более 14 баллов и итоговый рейтинг обучающегося по дисциплине за семестр составляет не менее 61 балла.

Схема перевода баллов в традиционную оценку

Экзамен (зачет)

Сумма баллов двух рубежных контролей с учетом дополнительных баллов

Таблица перевода итоговых баллов БРС в традиционную систему оценок

Примеры проверочных заданий, выдаваемых в начале занятия на 10-12 мин.

Проверочное задание 1

Вариант 1

1) Найти производную исходя из определения понятия производной: y = (1+3x)2

2) Численность популяции описывается уравнением: https://pandia.ru/text/78/041/images/image004_19.gif" width="88" height="41">

Вариант 3

1) Найти производную исходя из определения понятия производной: y = (1+x)2

2) Численность популяции описывается уравнением: https://pandia.ru/text/78/041/images/image006_13.gif" width="90" height="45">

Вариант 2

Вариант 3

Решить следующее дифференциальное уравнение.

Найти решение задачи Коши, если x(0)=1

Проверочное задание 3

Опрос 3. Вариант 2

Решить следующее дифференциальное уравнение.

Опрос 3. Вариант 3

Решить следующее дифференциальное уравнение.

Опрос 3. Вариант 4

Решить следующее дифференциальное уравнение.

Примерные тестовые задания для домашнего выполнения (конкретные тексты задания выдаются магистрантам через систему ИИАС и на бумажном носителе):

Домашнее задание 1

Рекомендации.

1) Подготовить выступление и приложить рукописный текст с докладом о примере физической модели

2) Подготовить выступление и приложить рукописный текст с докладом о примере регрессионной модели в вашей специальности (могу спросить любого) – 3-4 минуты – одно на группу. Не должно совпадать с примером другой группы.

3) Подготовить выступление и приложить рукописный текст с докладом о примере имитационной модели в вашей специальности (могу спросить любого) – 3-4 минуты – одно на группу. Не должно совпадать с примером другой группы.

4) Используя определение производной найти производную для выражения:

y= 1+ x + x 2

5) Найти производные:

https://pandia.ru/text/78/041/images/image014_10.gif" width="84" height="41 src=">

https://pandia.ru/text/78/041/images/image017_9.gif" width="108" height="27 src=">.gif" width="105" height="41 src=">, где u и а постоянные..gif" width="153" height="28 src=">

8) Популяция бактерий растет от начального размера в 1000 особей до размера p (t ) в момент t (в днях) согласно уравнению https://pandia.ru/text/78/041/images/image023_6.gif" width="106" height="41 src=">. Найдите p (t ) для всех моментов t >0, если p (0)=0. За сколько лет доля переболевших достигнет 90 % ?

3) Найти общее решение для следующих уравнений первого порядка и решить задачу Коши для указанных условий:

Если x(0)=2

, если x(0)=1

Домашнее задание 3

Рекомендации. Отчет по заданию предоставляется только в рукописном виде с указанием всех промежуточных расчетов (электронный вариант не нужен). Все расчеты должны быть прозрачны (написать, что вычисляете, указать исходную расчетную формулу, потом формулу с подставленными числами, затем ответ).

1) Рост популяции описывается уравнением Ферхюльста. Емкость экологической ниши для нее равна 1000. Постройте график динамики численности популяции, если известно, что начальная численность равна: а) 10; б) 700; в) 1200. Скорость роста r равна 0.5. Укажите координаты точки перегиба.

2) Разложите функцию f (x ) в ряд Тейлора в окрестности точки 0 x до 4 порядка:

f (x ) = x 3 +1, x 0 = 1;

https://pandia.ru/text/78/041/images/image028_5.gif" width="114" height="46 src=">

https://pandia.ru/text/78/041/images/image030_5.gif" width="71" height="41 src=">. Найти стационарные состояния уравнения и определить их тип устойчивости аналитически (метод Ляпунова) и с помощью графика функции f (x ) :

f (x ) = x 3 + 8 x – 6 x 2

f (x ) = x 4 + 2 x 3 − 15 x 2

Домашнее задание 4

Рекомендации. Отчет по заданию предоставляется только в рукописном виде с указанием всех промежуточных расчетов (электронный вариант не нужен). Все расчеты должны быть прозрачны (написать, что вычисляете, указать исходную расчетную формулу, потом формулу с подставленными числами, затем ответ).

1) (1,0 балла) С помощью диаграммы Ламерея построить график динамики численности популяции, если зависимость Nt +1 = f (N t ) имеет вид и сделать вывод об устойчивости развитии популяции.

2) (2,5 балла) Построить фазовый портрет для каждой из систем в окрестности стационарного состояния по плану:

2,1) Найти координаты особой (стационарной) точки

2,3) Методом изоклин (изоклины: 0o, +45o, –45o, 90o, углы пересечение с осями X и Y) построить фазовый портрет системы

2,4) по изоклинам и на основании пункта 2,2 нарисовать эскиз фазового портрета

2,5) Определить направление движения пробной (фигуративной) точки вдоль полученных в 2,4 интегральных кривых.

2,6) Выбрать произвольную точку на одной из полученных в пункте 2,4 интегральных кривых и построить кинетический портрет системы.

Магистрант

Вариант

Магистрант

Вариант

3) (1,5 балла) В процессе изучения некой популяции была выявлена следующая зависимость численность популяции от времени (см. данные ниже).

1) Развитие данной популяции подчиняется уравнению Мальтуса или уравнению Ферхюльста? Докажите это.

2) Если развитие популяции подчиняется уравнению Мальтуса, определите:

r

2,2) период удвоения T .

2) Если развитие популяции подчиняется логистическому уравнению, определите:

2,1) значение мальтузианского параметра r (удельной скорости размножения);

2,2) значение ресурсного параметра К

2,3) используя значения r и К оцените время через которое рост численности популяции начнет замедляться.

Данная контрольно-оценочная технология обеспечивает оценку уровня освоения профессиональных компетенций.

8 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

ДИСЦИПЛИНЫ

Основная литература

1. Ризниченко, по математическим моделям в биологии. Ч.1 . Описание процессов в живых системах во времени. - М.;Ижевск: РХД, 2002

Лекции. Методика чтения лекций

Лекции являются одним из основных методов обучения по дисциплине, которые должны решать следующие задачи:

· изложить важнейший материал программы курса, освещающий основные моменты;

· развить у магистрантов потребность к самостоятельной работе над учебной и научной литературой .

Главной задачей каждой лекции является раскрытие сущности темы и анализ ее главных положений. Рекомендуется на первой лекции довести до внимания магистрантов структуру курса и его разделы, а в дальнейшем указывать начало каждого раздела, суть и его задачи, а, закончив изложение, подводить итог по этому разделу, чтобы связать его со следующим.

Методика проведения лабораторных занятий

Целями проведения лабораторных работ являются:

· установление связей теории с практикой в форме экспериментального подтверждения положений теории;

· обучение магистрантов умению анализировать полученные результаты;

· контроль самостоятельной работы магистрантов по освоению курса;

· обучение навыкам профессиональной деятельности

Цели лабораторного практикума достигаются наилучшим образом в том случае, если выполнению эксперимента предшествует определенная подготовительная внеаудиторная работа. Поэтому преподаватель обязан довести до всех магистрантов график выполнения лабораторных работ с тем, чтобы они могли заниматься целенаправленной домашней подготовкой.

Перед началом очередного занятия преподаватель должен удостовериться в готовности магистрантов к выполнению лабораторной работы путем короткого собеседования и проверки наличия у магистрантов заготовленных протоколов проведения работы.

Успешное освоение дисциплины предполагает активное, творческое участие магистранта путем планомерной, повседневной работы.

Изучение дисциплины следует начинать с проработки рабочей программы, особое внимание, уделяя целям и задачам, структуре и содержанию курса.

Просмотрите конспект сразу после занятий, отметьте материал конспекта лекций, который вызывает затруднения для понимания. Попытайтесь найти ответы на затруднительные вопросы, используя рекомендуемую литературу. Если самостоятельно не удалось разобраться в материале, сформулируйте вопросы и обратитесь за помощью к преподавателю на консультации или ближайшей лекции.

Регулярно отводите время для повторения пройденного материала, проверяя свои знания, умения и навыки по контрольным вопросам.

Выполнение лабораторных работ

На занятии получите у преподавателя график выполнения лабораторных работ. Обзаведитесь всем необходимым методическим обеспечением.

Перед посещением лаборатории изучите теорию вопроса, предполагаемого к исследованию, ознакомьтесь с руководством по соответствующей работе и подготовьте протокол проведения работы, в который занесите:

· название работы;

· заготовки таблиц для заполнения экспериментальными данными наблюдений;

· уравнения химических реакций превращений, которые будут осуществлены при выполнении эксперимента;

· расчетные формулы.

Оформление отчетов должно проводиться после окончания работы в лаборатории или в другом отведенном под занятия месте.

Для подготовки к защите отчета следует проанализировать экспериментальные результаты, сопоставить их с известными теоретическими положениями или справочными данными, обобщить результаты исследований в виде выводов по работе, подготовить ответы на вопросы, приводимые в методических указаниях к выполнению лабораторных работ.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для проведения компьютерного практикума необходим компьютерный класс, позволяющий предоставить отдельное рабочее место для каждого слушателя. Компьютеры должны иметь параметры, достаточные для функционирования изучаемых программ. В случае использования недостаточно мощных компьютеров, можно порекомендовать использовать более старые версии программ или заменить некоторые изучаемые программы на менее ресурсоемкие. Компьютеры должны иметь выход в сеть Интернет. На компьютерах должна быть установлена Windows XP (или старше), а также комплект изучаемых программ (см. соотвествующий раздел пункта 8 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ).

В компьютерном классе должна быть большая доска, мел, тряпка.

Метод описания биологических систем с помощью адекватного математического аппарата. Определение матем. аппарата, адекватно отображающего работу биологических систем, является сложной задачей, связанной с их классификацией. Классификацию биосистем по сложности (логарифму числа состояний) можно провести, пользуясь, напр., шкалой, по которой к простым системам относятся системы, имеющие до тысячи состояний, к сложным - от тысячи до миллиона и к очень сложным - свыше миллиона состояний. Второй важнейшей характеристикой биосистемы является закономерность, выражаемая законом распределения вероятностей состояний. По этому закону можно определить неопределенность ее работы по К. Шеннону и оценку относительной организации. Т. о., биол. системы можно классифицировать по сложности (макс. разнообразию или максимально возможной неопределенности) и относительной организации, т. е. степени организованности (см. Биологических систем организация).

Классификационная диаграмма биосистем:

Простые системы;

Сложные системы;

Очень сложные системы;

Вероятностные системы;

Вероятностно-детерминированные системы;

Детерминированные системы.

На рис. приведена классификационная диаграмма биосистем в осях максимально возможной неопределенности характеризующей число состояний системы и определяемой логарифмом числа состояний, и уровня относительной орг-ции - , характеризующего степень организации системы. На диаграмме даны названия соответствующих полос так, что, напр., область под цифрой 8 означает «очень сложные вероятностно-детерминированные биосистемы». Опыт изучения биосистем показывает, что если , вычисленное по гистограмме распределения отклонений изучаемого показателя от его математического ожидания, лежит в пределах от 1,0 до 0,3, то можно считать, что это детерминированная биосистема. К таким системам относятся системы управления внутр. органами, в основном системы гормонального (гуморального) управления. Нейрон, органы внутр. сферы, системы обмена веществ по определенным параметрам тоже могут быть отнесены к детерминированным биосистемам. Матем. модели таких систем строятся на основе физико-хим. соотношений между элементами или органами системы. Моделированию в этом случае подвергается динамика изменения входных, промежуточных и выходных показателей. Таковы, напр., биофизические модели нервной клетки, сердечно-сосудистой системы, системы управления содержанием сахара в крови и другие. Матем. аппаратом, адекватно описывающим поведение таких детерминированных биосистем, является теория дифф. и интегральных ур-ний. На основании матем. моделей биосистем можно, используя методы автоматического управления теории, успешно решать задачи дифф. диагностики и оптимизации лечения. Область моделирования детерминированных биосистем развита наиболее полно.

Если организованность биосистем по отношению к изучаемому показателю (или системе показателей) лежит в пределах 0,3 - 0,1, то системы можно считать вероятностно-детерминированными. К ним относятся системы управления внутр. органами с явно выраженной компонентой нервной регуляции (напр., система управления частотой пульса), а также системы гормональной регуляции в случае патологии. В качестве адекватного матем. аппарата может служить представление динамики изменения показателей дифф. ур-ниями с коэфф., подчиняющимися определенным законам распределения. Моделирование таких биосистем развито сравнительно слабо, хотя и представляет значительный интерес для целей кибернетики медицинской.

Вероятностные биосистемы характеризуются значением организованности R в пределах от 0,1 до 0. К ним относятся системы, определяющие взаимодействие анализаторов и поведенческие реакции, включая процессы обучения при простых условно-рефлекторных актах и сложных взаимосвязях между сигналами окружающей среды и реакциями организма. Адекватным матем. аппаратом

для моделирования таких биосистем является теория детерминированных и случайных автоматов, взаимодействующих с детерминированными и случайными средами, случайных процессов теория.

Матем. моделирование биосистем включает предварительную статистическую обработку экспериментальных результатов (см. Биологических исследований математические методы), изучение сложности и организованности биосистем, выбор адекватной матем. модели и определение числовых значений параметров матем. модели по экспериментальным данным (см. Кибернетика биологическая). Последняя задача в общем случае является очень сложной. Для детерминированных биосистем, модели которых могут быть представлены линейными дифф. ур-ниями, определение наилучших параметров модели (коэфф. дифф. ур-ния) может быть проведено методом спуска (см. Градиентный метод) в пространстве параметров модели, оценивая по интегралу от квадрата ошибки. В этом случае требуется применить процедуру спуска по параметрам для минимизации функционала

где Т - период, характерное время для показателя , у - экспериментальная кривая изменения показателя биосистемы, у - решение матем. модели. Если необходимо получить наилучшее (в смысле интеграла от квадрата ошибки) приближение матем. модели к работе биосистемы по нескольким показателям по различным внутренним состояниям биосистемы или для различных характерных внешних воздействий, то можно, применяя метод спуска в пространстве параметров модели, минимизировать сумму частных функционалов . При использовании такой процедуры выбора параметров матем. модели можно повысить вероятность получения единственного набора коэфф. модели, отвечающих принятой структуре. С помощью Б. с. м. м. желательно получить не только количественные характеристики работы биосистем, ее элементов и характеристики взаимосвязи элементов, но и выявить критерии работы баосистем, установить определенные общие принципы их функционирования. Лит.: Глушков В. М. Введение в кибернетику. К., 1964 [библиогр. с. 319-322]; Моделирование в биологии и медицине, в. 1-3. К., 1965-68; Буш Р., Мостеллер Ф. Стохастические модели обучаемости. Пер. с англ. М., 1962. Ю. Г. Антомонов.

Мы уже говорили о том, что математический подход к изучению тех или иных явлений реального мира начинается обычно с создания соответствующих общих понятий, т. е. с построения математических моделей, обладающих существенными для нас свойствами тех систем и процессов, которые мы изучаем. Мы упоминали и о тех трудностях, с которыми Связано построение таких моделей в биологии, трудностях, обусловленных чрезвычайной сложностью биологических систем. Однако, несмотря на эти трудности, "модельный" подход к биологическим проблемам сейчас успешно развивается и уже принес определенные результаты. Мы рассмотрим некоторые модели, относящиеся к различным биологическим процессам и системам.

Говоря о роли моделей в биологических исследованиях, важно заметить следующее. Хотя термин «модель» мы понимаем в абстрактном смысле - как некоторую систему логических понятий, а не как реальное физическое устройство, все же модель - это нечто существенно большее, чем простое описание явления или чисто качественная гипотеза, в которых еще остается достаточно места для разного рода неясностей и субъективных мнений. Напомним следующий пример, относящийся к довольно далекому прошлому. В свое время Гельмгольц, занимаясь изучением слуха, выдвинул так называемую резонансную теорию, выглядевшую правдоподобно с чисто качественной стороны. Однако проведенные позже количественные расчеты, учитывающие реальные значения масс, упругости и вязкости составляющих слуховую систему компонент, показали несостоятельность этой гипотезы. Иначе говоря, попытка превратить чисто качественную гипотезу в точную модель, допускающую ее исследование математическими методами, сразу же обнаружила несостоятельность исходных принципов. Конечно, если мы построили некоторую модель и даже получили хорошее согласие между этой моделью и результатами соответствующего биологического эксперимента, то это еще не доказывает правильности нашей модели. Вот если мы на основании изучения нашей модели сможем сделать какие-то предсказания о той биологической системе, которую мы моделируем, а затем подтвердим эти предсказания реальным экспериментом, то это будет гораздо более ценным свидетельством в пользу правильности модели.

Но перейдем к конкретным примерам.

2.Кровообращение

Одной из первых, если не самой первой, работой по математическому моделированию биологических процессов следует считать работу Леонарда Эйлера, в которой он развил математическую теорию кровообращения, рассматривая в первом приближении всю кровеносную систему как состоящую из резервуара с упругими стенками, периферического сопротивления и насоса. Эти идеи Эйлера (как и некоторые другие его работы) были сперва основательно забыты, а затем возрождены в более поздних работах других авторов.

3. Законы Менделя

Достаточно давняя и хорошо известная, но тем не менее весьма замечательная модель в биологии - это менделевская теория наследственности. Эта модель, основанная на теоретико-вероятностных понятиях, состоит в том, что в хромосомах родительских клеток заложены определенные наборы признаков, которые при оплодотворении комбинируются между собой независимо и случайно. В дальнейшем эта основная идея подверглась весьма существенным уточнениям; так, например, было обнаружено, что разные признаки не всегда независимы друг от друга; если они связаны с одной и той же хромосомой, то они могут передаваться лишь в определенной комбинации. Далее, обнаружилось, что и разные хромосомы комбинируются не независимо, а имеет место свойство, названное сродством хромосом, нарушающее эту независимость и т. д. В настоящее время теоретико-вероятностные и статистические методы весьма широко проникли в генетические исследования и даже термин «математическая генетика» получил полные права гражданства. Сейчас в этой области ведется интенсивная работа, получено много результатов, интересных как с биологической, так и с чисто математической точки зрения. Однако в самой основе этих исследований лежит та модель, которая была создана Менделем более 100 лет назад.

4. Модели мышцы

Одним из интереснейших объектов физиологического исследования является мышца. Этот объект весьма доступен, и многие исследования экспериментатор может проделать просто на себе, располагая лишь сравнительно несложным оборудованием. Достаточно ясны и определенны и те функции, которые выполняет мышца в живом организме. Несмотря на все это, многочисленные попытки построить удовлетворительную модель работы мышцы не дали окончательных результатов. Ясно, что хотя мышца может растягиваться и сокращаться, подобно пружине, их свойства совершенно различны, и даже в самом первом приближении пружину нельзя рассматривать как подобие мышцы. Для пружины существует строгая зависимость между ее удлинением и приложенной к ней нагрузкой. Для мышцы это не так: мышца может менять свою длину, сохраняя натяжение, и наоборот, менять силу тяги, не изменяя длины. Проще говоря, при одной и той же длине мышца может быть расслаблена, а может быть напряжена.

Среди различных режимов работы, возможных для мышцы, наиболее существенны так называемое изотоническое сокращение (т. е. сокращение, при котором напряжение мышцы остается постоянным) и изометрическое напряжение, при котором не меняется длина мышцы (оба ее конца неподвижно закреплены). Исследование мышцы в этих режимах важно для понимания принципов ее работы, хотя в естественных условиях активность мышцы не бывает ни чисто изотонической, ни чисто изометрической.

Для описания соотношения между скоростью изотонического сокращения мышцы и величиной нагрузки были предложены различные математические формулы. Наиболее известная из них - так называемое характеристическое уравнение Хилла. Оно имеет вид

(P+a)V=b(P 0 -P) ,

- скорость сокращения, а, b и Р 0 - постоянные.

Другие хорошо известные формулы для описания этой же связи - это уравнение Обера

P = Р 0 e- V⁄P ±F

и уравнение Полиссара

V=const (А 1-P/P 0 - B 1-P/P 0) .

Уравнение Хилла получило широкое распространение в физиологии; оно дает достаточно хорошее совпадение с экспериментом для мышц самых разных животных, хотя на самом деле оно представляет собой результат «подбора», а не вывод из некоторой модели. Два других уравнения, дающих в довольно широком диапазоне нагрузок примерно ту же зависимость, что и уравнение Хилла, получены их авторами из определенных представлений о физико-химическом механизме мышечного сокращения. Существует ряд попыток построить модель работы мышцы, рассматривая последнюю как некоторую комбинацию упругих и вязких элементов. Однако до сих пор достаточно удовлетворительной модели, отражающей все основные черты работы мышцы в различных режимах, не существует.

5. Модели нейрона, нейронные сети

Нервные клетки, или нейроны, это те «рабочие единицы», из которых состоит нервная система и которым организм животного или человека обязан всеми своими способностями воспринимать внешние сигналы и управлять различными частями тела. Характерная черта нервных клеток состоит в том, что такая клетка может находиться в двух состояниях - покоя и возбуждения. В этом нервные клетки сходны с такими элементами, как радиолампы или полупроводниковые триггеры, из которых собираются логические схемы вычислительных машин. За последние 15-20 лет было предпринято много попыток моделировать деятельность нервной системы, исходя из тех же принципов, на которых основана работа универсальных вычислительных машин. Еще в 40-х годах американские исследователи Мак-Каллок и Питтс ввели понятие «формального нейрона», определив его как элемент (физическая природа которого не играет роли), снабженный некоторым количеством «возбуждающих» и некоторым количеством «тормозящих» входов. Сам этот элемент может находиться в двух состояниях - «покой» или «возбуждение». Возбужденное состояние наступает в том случае, если на нейрон пришло достаточное число возбуждающих сигналов и нет тормозящих сигналов. Мак-Каллок и Питтс показали, что с помощью схем, составленных из таких элементов, можно, в принципе, реализовать любой из типов обработки информации, происходящих в живом организме. Это, однако, вовсе не означает, что мы тем самым познали действительные принципы работы нервной системы. Прежде всего, хотя для нервных клеток характерен принцип «все или ничего», т. е. наличие двух четко выраженных состояний - покой и возбуждение, отсюда вовсе не следует, что наша нервная система, подобно универсальной вычислительной машине, пользуется двоичным цифровым кодом, состоящим из нулей и единиц. Например, в нервной системе существенную роль играет, видимо, частотная модуляция, т. е. передача информации с помощью длин временных интервалов между импульсами. Вообще в нервной системе нет, видимо, такого разделения способов кодирования информации на «цифровые» дискретные) и «аналоговые» (непрерывные), какое имеется в современной вычислительной технике.

Для того чтобы система нейронов работала как некоторое целое, необходимо, чтобы между этими нейронами были определенные связи: импульсы, генерируемые одним нейроном, должны поступать на входы других нейронов. Эти связи могут иметь правильную, регулярную структуру, а могут определяться лишь статистическими закономерностями и подвергаться тем или иным случайным изменениям. В существующих сейчас вычислительных устройствах никакой случайности в соединениях между элементами не допускается, однако имеется ряд теоретических исследований по поводу возможности построения вычислительных устройств, основанных на принципах случайных связей между элементами. Есть достаточно серьезные доводы в пользу того, что связи между реальными нейронами в нервной системе тоже носят в значительной мере статистический, а не строго регулярный характер. Однако мнения по этому поводу расходятся.

В целом, по поводу проблемы моделирования нервной системы можно сказать следующее. Мы уже довольно много внаем об особенностях работы нейронов, т. е. тех элементов, из которых состоит нервная система. Более того, с помощью систем формальных нейронов (понимаемых в смысле Мак- Каллока и Питтса или в каком-либо ином), имитирующих основные свойства реальных нервных клеток, можно моделировать, как уже говорилось, весьма разнообразные способы обработки информации. Тем не менее мы еще довольно далеки от четкого понимания основных принципов работы нервной системы и отдельных ее частей, а следовательно, и от создания ее удовлетворительной модели * .

* (Если мы можем создать какую-то систему, умеющую решать такие же задачи, что и какая-то другая система, то это еще не значит, что обе системы работают по одним и тем же принципам. Например, можно численно решать дифференциальное уравнение на цифровой вычислительной машине, задав ей соответствующую программу, а можно то же уравнение решать на аналоговой машине. Мы получим одинаковые или почти одинаковые результаты, но принципы обработки информации в этих двух типах машин совершенно различные. )

6. Восприятие зрительных образов. Цветное зрение

Зрение - один из основных каналов, по которому к нам поступают сведения о внешнем мире. Известное выражение - лучше один раз увидеть, чем сто раз услышать - справедливо, между прочим, и с чисто информационной точки зрения: количество информации, которое мы воспринимаем с помощью зрения, несравненно больше, чем воспринимаемое другими органами чувств. Эта важность зрительной системы для живого организма наряду с другими соображениями (специфичность функций, возможность проведения разнообразных исследований без каких-либо повреждений системы и т. д.) стимулировала ее изучение и, в частности, попытки модельного подхода к этой проблеме.

Глаз представляет собой орган, служащий одновременно и оптической системой и устройством для обработки информации. И с той и с другой точки зрения эта система обладает рядом удивительных свойств. Замечательна способность глаза приспосабливаться к очень широкому диапазону интенсивностей освещения и правильно воспринимать при этом все цвета. Например, находящийся в плохо освещенной комнате кусок мела отражает меньше света, чем кусок угля, вынесенный на яркий солнечный свет, тем не менее мы в каждом из этих случаев воспринимаем цвета соответствующих предметов правильно. Глаз хорошо передает относительные различия в интенсивностях освещения и даже их несколько «утрирует». Так, серая линия на ярко-белом фоне кажется нам более темной, чем сплошное поле того же серого цвета. Эта способность глаза подчеркивать контрасты освещенности связана с тем, что зрительные нейроны оказывают друг на друга тормозящее действие: если из двух соседних нейронов первый получает более сильный сигнал, чем второй, то он оказывает на второй интенсивное тормозящее действие, и на выходе этих нейронов разница в интенсивности получается больше, чем была разница в интенсивности входных сигналов. Модели, состоящие из формальных нейронов, соединенных между собой как возбуждающими, так и тормозящими связями, привлекают внимание как физиологов, так и математиков. Здесь имеются и интересные результаты и нерешенные вопросы.

Большой интерес представляет механизм восприятия глазом различных цветов. Как известно, все оттенки цветов, воспринимаемых нашим глазом, могут быть представлены как комбинации трех основных цветов. Обычно в качестве таких основных цветов берут красный, синий и желтый цвета, отвечающие длинам волн 700, 540 и 450 Å, но этот выбор не однозначен.

«Трехцветность» нашего зрения связана с тем, что в глазу человека имеются рецепторы трех типов, с максимумами чувствительности в желтой, синей и красной зонах соответственно. Вопрос о том, как мы с помощью этих трех рецепторов различаем большое количество цветовых оттенков, весьма не прост. Например, недостаточно ясно еще - чем именно кодируется тот или иной цвет в нашем глазу: частотой нервных импульсов, локализацией того нейрона, который преимущественно реагирует на данный оттенок цвета, или чем-либо еще. Существуют некоторые модельные представления об этом процессе восприятия оттенков, однако они еще носят довольно предварительный характер. Несомненно, впрочем, что и здесь существенную роль должны играть системы нейронов, соединенных между собой как возбуждающими, так и тормозящими связями.

Наконец, глаз весьма интересен и как кинематическая система. Рядом остроумных опытов (многие из них были выполнены в лаборатории физиологии зрения Института проблем передачи информации в Москве) был установлен следующий на первый взгляд неожиданный факт: если некоторое изображение неподвижно относительно глаза, то глаз его не воспринимает. Наш глаз, осматривая какой-либо предмет, буквально «ощупывает» его (эти движения глаза можно при помощи соответствующей аппаратуры точно зарегистрировать). Изучение двигательного аппарата глаза и разработка соответствующих модельных представлений достаточно интересны как сами по себе, так и в связи с другими (оптическими, информационными и т. п.) свойствами нашей зрительной системы.

Резюмируя, можно сказать, что мы еще далеки от создания вполне удовлетворительных моделей зрительной системы, хорошо описывающих все ее основные свойства. Однако ряд важных аспектов и (принципов ее работы уже достаточно ясен и может быть смоделирован в виде вычислительных программ для УЦВМ или даже в виде технических устройств.

7. Модель активной среды. Распространение возбуждения

Одно из весьма характерных свойств многих живых тканей, в первую очередь нервной ткани, это их способность к возбуждению и к передаче возбуждения от одних участков к соседним с ними. Примерно раз в секунду волна возбуждения пробегает по нашей сердечной мышце, заставляя ее сокращаться и гнать кровь по всему телу. По нервным волокнам возбуждение, распространяясь от периферии (органов чувств) к спинному и головному мозгу, информирует нас о внешнем мире, а в обратном направлении идут возбуждения-команды, предписывающие мышцам те или иные действия.

Возбуждение в нервной клетке может возникнуть само по себе (как говорят, «спонтанно»), под действием возбужденной соседней клетки или же под влиянием какого-либо внешнего сигнала, скажем, электрического раздражения, идущего от некоторого источника тока. Перейдя в возбужденное состояние, клетка пребывает в нем некоторое время, а затем возбуждение исчезает, после чего наступает определенный период невосприимчивости клетки к новым раздражениям - так называемый рефрактерный период. В течение этого периода клетка не реагирует на поступающие к ней сигналы. Затем клетка снова переходит в первоначальное состояние, из которого возможен переход в состояние возбуждения. Таким образом, возбуждение нервных клеток обладает рядом четко выраженных свойств, отправляясь от которых можно построить аксиоматическую модель этого явления. Далее для исследования этой модели могут быть применены чисто математические методы.

Представления о такой модели были развиты несколько лет тому назад в работах И. М. Гельфанда и М. Л. Цетлина, продолженных затем рядом других авторов. Сформулируем аксиоматическое описание модели, о которой идет речь.

Будем под «возбудимой средой» понимать некоторое множество X элементов («клеток»), обладающих следующими свойствами:

1.Каждый элемент может находиться в одном из трех состояний: покой, возбуждение и рефрактерность;

2.От каждого возбужденного элемента возбуждение распространяется по множеству элементов, находящихся в покое, с некоторой скоростью v ;

3.Если элемент х не был возбужден в течение некоторого определенного времени Т(х) , то по прошествии этого времени он самопроизвольно переходит в возбужденное состояние. Время Т(х) называется периодом спонтанной активности элемента х . При этом не исключается и тот случай, когда Т(х)= ∞ , т. е. когда спонтанная активность на самом деле отсутствует;

4.Состояние возбуждения длится некоторое время τ (которое может зависеть от х ), потом элемент переходит на время R(x) в рефрактерное состояние, после чего наступает состояние покоя.

Похожие математические модели возникают и в совсем других областях, например в теории горения, или в задачах о распространении света в неоднородной среде. Однако наличие «периода рефрактерности» является характерной чертой именно биологических процессов.

Описанную модель можно исследовать или аналитическими методами, или с помощью реализации ее на вычислительной машине. В последнем случае мы, понятно, вынуждены считать, что множество X (возбудимая среда) состоит из некоторого конечного числа элементов (в соответствии с возможностями существующей вычислительной техники - порядка нескольких тысяч). Для аналитического исследования естественно предполагать X некоторым непрерывным многообразием (например, считать, что X - это кусок плоскости). Простейший случай такой модели получается, если принять за X некоторый отрезок (прототип нервного волокна) и предположить, что время, в течение которого каждый элемент находится в возбужденном состоянии, очень мало. Тогда процесс последовательного распространения импульсов по такому «нервному волокну» может быть описан цепочкой обыкновенных дифференциальных уравнений первого порядка. Уже в этой упрощенной модели воспроизводится ряд особенностей процесса распространения, обнаруживаемых и в реальных биологических экспериментах.

Весьма интересен как с теоретической, так и с прикладной медицинской точки зрения вопрос об условиях возникновения в такой модельной активной среде так называемой фибрилляции. Это явление, наблюдаемое экспериментально, например на сердечной мышце, состоит в том, что вместо ритмических согласованных сокращений в сердце возникают беспорядочные локальные возбуждения, лишенные периодичности и нарушающие его функционирование. Впервые теоретическое исследование этой проблемы было предпринято в работе Н. Винера и А. Розенблюта в 50-х годах. В настоящее время работы в этом направлении интенсивно ведутся у нас и дали уже ряд интересных результатов.

ОБЩАЯ ХАРАКТЕРИСТИКА БУХГАЛТЕРСКОГО УЧЕТА 2

Виды хозяйственного учета 4

Требования, предъявляемые к учету 5

Предмет бухгалтерского учета 6

Классификации хозяйственных средств и источников их образовании 7

Бухгалтерский баланс, его строение, содержание и значение 10

Изменения в балансе, вызываемые хозяйственными операциями 11

Счета бухгалтерского учета, их назначение и строение 12

Двойная запись, ее сущность и значение 14

Синтетические и аналитические счета 15

Взаимосвязь между балансом в счетами 16

Основы классификации счетов и ее значение 17

Основные счета 19

Регулирующие счета 22

Операционные счета 25

Финансово-результатные счета 28

Забалансовые счета 29

Документация, ее значение, требования к содержанию и оформлению документов 30

Порядок проверки и обработки документов 33

Инвентаризация, ее значение и виды 35

Учетные регистры и техника учетной регистрации 37

Формы бухгалтерского учета 40

Ошибки в бухгалтерских записях, способы их выявления и исправления 44

Основные средства, их классификация и оценка 46

Документальное оформление и учет поступления основных средств 48

Учет капитальных инвестиций 50

Инвентаризация основных средств. 54

Учет арендных операций 56

Нематериальные активы, их классификация и оценка 58

Учет поступления нематериальных активов 59

Учет амортизации нематериальных активов 61

Учет выбытая нематериальных активов 62

Инвентаризация нематериальных активов 63

Производственные запасы, их классификация и оценка 64

Документальное оформление поступления и расходования запасов 66

Учет поступления запасов и расчетов с поставщиками 67

Порядок оценки и учета расходования производственных запасов 69

Особенности учета малоценных и быстроизнашивающихся предметов 71

Учет переоценки производственных запасов 73

Инвентаризация производственных запасов 74

Организация и учет расчетов по оплате труда 77

Удержания и вычеты из заработной платы 80

Порядок оформления расчетов по оплате труда 85

Синтетический и аналитический учет расчетов по оплате труда 86

Учет расчетов по обязательному государственному социальному и пенсионному страхованию 87

Признание и классификация затрат на производство 88

Учет общепроизводственных расходов, порядок их распределения и списания 90

Учет затрат на производство и калькулирование себестоимости продукции 91

Учет затрат по элементам 92

Учет материальных затрат 94

Учет затрат на оплату труда и отчислений на социальные мероприятия 97

Учет потерь от брака 98

Организация аналитического учета затрат на производство 99

Организация учета готовой продукции 100

Учет отгрузки (реализации) готовой продукции 102

Учет операций по текущему счету в национальной валюте 106

Учет кассовых операций 109

Учет расчетов с подотчетными лицами 112

Учет безналичных расчетов 115

Учет уставного капитала 119

Учет финансовых результатов. Учет использования прибыли. 122

Финансовая отчетность, и принципы ее составления 125

^

ОБЩАЯ ХАРАКТЕРИСТИКА БУХГАЛТЕРСКОГО УЧЕТА


В условиях перехода Украины к рыночной экономике, развития международных хозяйственных связей возрастает потребность всех уровней управления в своевременной и достоверной информации, обеспечивающей принятие обоснованных решений. В этой свези возрастает роль учета как: составной части экономической информации.

Основные задачи теории бухгалтерского учета состоят в разработке общих, методологических основ организации бухгалтерского учета на предприятиях, в организациях и учреждениях; научном обобщении современной практики организации учета и контроля; усовершенствовании действующих и создании новых прогрессивных способов учетной регистрации и форм организации бухгалтерского учета.

В условиях перехода Украины к рыночной экономике, развития международных хозяйственных связей возрастает потребность всех уровней управления в своевременной и достоверной информации, обеспечивающей принятие обоснованных решений. В этой связи возрастает роль учета как: составной части экономической информации.

Пользуясь показателями текущего учета и отчетности, руководство предприятия контролирует рациональность использования хозяйственных ресурсов, рентабельность (т.е. получение прибыли, достаточной для привлечения и удержания вложенного капитала), ликвидность (достаточности средств для погашения задолженности по обязательствам), получает другую деловую информацию, а также осуществляет планирование и прогнозирование деятельности предприятия.

Теория бухгалтерского учета является наукой о задачах, предмете, методе, технике, формах и организации бухгалтерского учета.

Основные задачи теории бухгалтерского учета состоят в разработке общих,методологических основ организации бухгалтерского учета на предприятиях, в организациях и учреждениях; научном обобщении современной практики организации учета и контроля; усовершенствовании действующих и создании новых прогрессивных способов учетной регистрации и форм организации бухгалтерского учета.

Вместе с отраслевыми курсами, в которых освещаются с бенности организации учета в отдельных звеньях народи; хозяйства (промышленность, сельское хозяйство, строите ство, торговля и др.), теория бухгалтерского учета составл науку о бухгалтерском учете. Критерием научного ypoi учета является его действенность, т.е. способность своеврем но представлять исчерпывающую информацию, необходим для управления, анализа и контроля. При этом показан учета должны обеспечивать информацию не только для вн реннего управления, но и для внешних потребителей (нало вых и финансовых органов, банков, инвесторов, делов партнеров и др.).

По своему содержанию бухгалтерский учет тесно взаимоу зан с планированием, экономическим анализом, аудитом, ре зией, правом, статистикой. Так, с помощью данных бухгалт ского учета осуществляется контроль за выполнен» плановых заданий за отчетный период и обеспечивается i формация для планирования и прогнозирования деятельно! предприятия. Экономический анализ базируется на показа лях плана и бухгалтерского учета, изучает причины откло) ний от плана, выявляет резервы повышения эффективности; зяйственной деятельности.

Отражая хозяйственные процессы, бухгалтерский учет koi ролирует соблюдение законодательных актов, юридическ норм, регулирующих хозяйственные взаимоотношения. Д контроля за развитием экономики страны показатели уч< широко используются для статистических обобщений.

Внедрение современной вычислительной техники став новые проблемы перед теорией и практикой бухгалтерско учета (использование математического программирования, к делирование хозяйственных процессов и т.п.).

Развитие международных экономических связей обусловл вает необходимость усовершенствования системы (плана) счет бухгалтерского учета применительно к требованиям междунарс ных стандартов с целью обеспечения всех уровней управления внешних потребителей необходимой учетной и аналитичесю информацией.
^

Виды хозяйственного учета


Для отражения разносторонней деятельности предприятия целью получения информации, необходимой для управления контроля, используют три вида учета - оперативный, бухта терский и статистический. Каждый из них имеет свои задачи, объекты учета, способы получения и обработки информации и выполняет свою функцию, возложенную на хозяйственный учет в стране.

^ Оперативный (оперативно-технический) учет используется для наблюдения и контроля за отдельными операциями и процессами на важнейших участках хозяйственной деятельности с целью управления ими по мере их осуществления (выполнения договора поставки, плана выпуска и реализации готовой продукции и Т.д.). Отличительной особенностью оперативного учета является оперативность получения информации, поскольку активно влиять на хозяйственные процессы возможно, только владея своевременной информацией. Поскольку оперативный учет контролирует в основном однородные операции, то в нем отражаются преимущественно натуральные и трудовые измерители. Денежный измеритель используется не как обобщающий, а только в случаях, когда этого требует характер учитываемых операций (например, для контроля объемов договоров поставки, отгрузки и реализации продукции и пр.).

Определенной системы первичной документации оперативный учет, как правило, не имеет. В нем используются в основном данные документов бухгалтерского учета и только в отдельных случаях предприятия составляют свои формы документов.

^ Бухгалтерский учет охватывает все средства предприятия и источники их образования, хозяйственные процессы и результаты деятельности. Важная особенность бухгалтерского учета состоит в том, что хозяйственные операции, учтенные в натуральных и трудовых измерениях, обязательно обобщаются в денежном измерителе. Благодаря этому получают такие обобщающие показатели, как общая стоимость имущества предприятия- состав хозяйственных средств, их движение и использование в процессе деятельности; себестоимость продукции; объем реализации; финансовые результаты и другие показатели хозяйственной деятельности, которые не могут дать ни оперативный учет, ни статистический.

Обязательным условием отражения хозяйственных операций в бухгалтерском учете является их документальное оформление, благодаря чему показатели учета приобретают доказательное, юридическое значение. Экономическая сторона бухгалтерского учета дает возможность оценить эффективность хозяйственных процессов, юридическая- законность их осуществления, В этомпроявляетсявзаимосвязь между экономикой и правом в процессе хозяЦственной деятельности,

Для обеспечения систематического и взаимосвязанного отражения хозяйственных средств и процессов в бухгалтерском учете используются присущие только ему способы обработки учетной информации - система счетов, двойная" запись хозяйственных операций на счетах, балансовое обобщение и др.

Таким образом, бухгалтерский учет является системой сплошного, непрерывного, документально обоснованного и взаимосвязанного отражения хозяйственных средств, их источников, хозяйственных процессов и результатов деятельности в денежном измерении для обеспечения информации, необходимой для управления и контроля.

^ Статистический учет изучает массовые общественно-экономические и отдельные типовые явления и процессы. При этом их количественные аспекты статистика исследует в неразрывной связи с качественным содержанием (например, динамика производства и себестоимости продукции, производительности труда и оплаты труда и т.п.) и выявляет закономерности их развития.

Статистика использует разные измерители и присущие ей способы обработки информации (массовые и выборочные наблюдения, относительные и средние величины, динамичные ряды и пр.). Для получения сводной информации статистика широко использует данные оперативного и бухгалтерского учета. Данные статистического учета используются также для перспективного планирования и прогнозирования социально-экономического развития страны. Поэтому оперативный и бухгалтерский учет подчиняются задачам государственной статистики.

Все три вида учета - оперативный, бухгалтерский и статистический - тесно взаимосвязаны, дополняют друг друга и образуют единую систему народнохозяйственного учета. Так, бухгалтерский учет использует данные оперативного табельного учета для начисления заработной платы работникам, а в отдельных случаях с ним объединяется (например, оперативно-бухгалтерский учет материалов). Обобщая показатели бухгалтерского учета, статистика изучает размещение и использование материальных и трудовых ресурсов страны, обеспечивает информацию для прогнозирования их развития.

Предметом хозяйственного учета является процесс расширенного общественного воспроизводства. Отдельные виды учета отражают только разные стороны этого процесса. Все три вида учета базируются на единой первичной документации для получения нужной им информации. Их взаимосвязь обеспечивается также централизованным государственным руководством учетом, которое осуществляется Министерством финансов Украины и Госкомстатом Украины. В функции Минфина Украины входит методологическое руководство бухгалтерским учетом и отчетностью в стране. Государственное руководство учетом обеспечивает, единство документации, форм учета и отчетности, единую методику определения учетных показателей и оценки хозяйственных средств.

Внедрение современной вычислительной техники способствует сближению (интеграции) и повышению оперативности всех видов учета, дает возможность получать больший объем информации на качественно новой организационной основе автоматизированных систем управления.