Операции дисконтирования и наращивания капитала. Процессы наращения и дисконтирования. Операции наращения и дисконтирования

Операции дисконтирования и наращивания капитала. Процессы наращения и дисконтирования. Операции наращения и дисконтирования

В финансовой практике часто приходится решать задачи, обратные опре­делению наращённой суммы: по уже известной наращённой сумме (FV) следует определить неизвестную первоначальную сумму долга (PV).

Такие ситуации возникают при разработке условий финансовой сделки, или когда проценты с наращённой суммы удерживаются непосредственно при выдаче ссуды.

Процесс начисления и удержания процентов вперёд, до наступ­ления срока погашения долга, называют учётом, а сами проценты в виде разно­сти наращённой и первоначальной сумм долга дисконтом (discount)".

Термин дисконтирование в широком смысле означает определение зна­чения стоимостной величины на некоторый момент времени при условии, что в будущем она составит заданную величину.

Рисунок 6 - Логика финансовой операции дисконтирования


Не редко такой расчёт называют приведением стоимостного показателя к заданному моменту времени, а величину РУ называют приведённой (современной или текущей) величиной FV. Таким образом, дисконтирование - приведение буду­
щих денег к текущему моменту времени, и при этом не имеет значения, имела ли место в действительности данная финансовая операция или нет, а также независимо от того, можно ли считать дисконтируемую сумму буквально наращённой.

Именно дисконтирование позволяет учитывать в стоимостных расчётах фактор времени, поскольку даёт сегодняшнюю оценку суммы, которая будет получена в будущем. Привести стоимость денег можно к любому моменту вре­мени, а не обязательно к началу финансовой операции.

Исходя из методики начисления процентов, применяют два вида дискон­тирования:

Математическое дисконтирование по процентной ставке;

Банковский учёт по учётной ставке.

Различие в ставке процентов и учётной ставке заключается в различии базы для начислений процентов:

В процентной ставке в качестве базы берётся первоначальная сумма

(1.29)

В учётной ставке за базу принимается наращённая сумма долга

РУ-РУ Л. (0°)

Проценты, начисленные по ставке процентов, называются антисипатив- ными, а по учётной ставке - декурсивными.

Учётная ставка более жёстко отражает временной фактор, чем процент­ная ставка. Если сравнить между собой математическое и банковское дискон­тирование в случае, когда процентная и учётная ставка равны по своей величине, то видно, что приведённая величина по процентной ставке больше приведённой величины по учётной ставке.

Математическое дисконтирование - определение первоначальной сум­мы долга, которая при начислении процентов по заданной величине процент­ной ставки (/), позволит к концу срока получить указанную наращённую сумму для простых процентов:

РУ =---------- =---------- = РУ х (1 + пх /)-1 = РУ х кЛ, (1.31)

1 + п х I 1 + п х I

где кд - дисконтный множитель (коэффициент приведения) для простых про­центов.

Дисконтный множитель показывает, какую долю составляет первона­чальная сумма долга в величине наращённой суммы. Поскольку дисконтный множитель (множитель приведения) зависит от двух аргументов (процентной ставки и срока ссуды), то его значения легко табулируются, что облегчает фи­нансовые расчёты.

Пример. Через 150 дней с момента подписания контракта необходимо уплатить 310 тыс. руб., исходя из 8% годовых и временной базы 360 дней. Определить первоначальную сумму долга. Решение:

Поскольку срок ссуды менее года, то используем формулу простых процентов:

РУ = 310000 х 1 / (1 + 150 / 360 х 0,08) = 300 000 руб.

РУ = 310000 х 0,9677419 = 300 000 руб. Таким образом, первоначальная сумма долга составила 300 тыс. руб., а проценты за 150 дней - 10 тыс. руб. Для сложных процентов -

РУ = ГУ х(1 + 0-п = ГУ хка, (1.32)

где кд - дисконтный множитель для сложных процентов.

Если начисление процентов производится т раз в год, то формула примет


РУ = ГУ х
(1.33)

Пример. Через два года фирме потребуются деньги в размере 30 млн руб., какую сумму необходимо сегодня поместить в банк, начисляющий 25% годовых, чтобы через 2 года получить требуемую сумму? Решение:

Поскольку срок финансовой операции составляет более года, что исполь­зуем формулу приведения для сложных процентов:

РУ = 30000000 х 1 / (1 + 0,25)2 = 19 200 000 руб.

РУ = 30000000 х 0,6400000 = 19 200 000 руб.

Таким образом, фирме следует разместить на счёте 19 200 000 руб. под 25% годовых, чтобы через два года получить желаемые 30 000 000 руб.

Современная величина и процентная ставка, по которой проводится дис­контирование, находятся в обратной зависимости: чем выше процентная ставка, тем при прочих равных условиях меньше современная величина.

В той же обратной зависимости находятся современная величина и срок финансовой операции: чем выше срок финансовой операции, тем меньше при прочих равных условиях современная величина.

Банковский учёт - второй вид дисконтирования, при котором исходя из известной суммы в будущем, определяют сумму в данный момент времени, удерживая дисконт.

Операция учёта (учёт векселей) заключается в том, что банк или другое финансовое учреждение до наступления платежа по векселю покупает его у предъявителя по цене ниже суммы векселя, т. е. приобретает его с дисконтом.

Сумма, которую получает векселедержатель при досрочном учёте векселя, называется дисконтированной величиной векселя. При этом банк удерживает в свою пользу проценты (дисконт) от суммы векселя за время, оставшееся до срока его погашения. Подобным образом (с дисконтом) государство продаёт большинство своих ценных бумаг.

Для расчёта дисконта используется учётная ставка:

Б = РУ - РУ = РУ х п х Л = РУ х ^ х Л, (1.34)

где п - продолжительность срока в годах от момента учёта до даты выплаты известной суммы в будущем.

РУ = РУ - РУх п х Л = РУ х (1 - п х Л), (1.35)

где (1 - п х ё) - дисконтный множитель.

Очевидно, что чем выше значение учётной ставки, тем больше дисконт. Дисконтирование по простой учётной ставке чаще всего производится по французской практике начисления процентов, т. е. когда временная база при­нимается за 360 дней, а число дней в периоде берётся точным.

Пример. Вексель выдан на 5 000 руб. с уплатой 17 ноября, а владелец учёл его в банке 19 августа по учётной ставке 8%. Определить сумму, получен­ную предъявителем векселя и доход банка при реализации дисконта.

Для определения суммы при учёте векселя рассчитываем число дней, оставшихся до погашения обязательств:

Отсюда, определяемая сумма:

РУ = 5000 х (1 - 90/360 х 0,08) = 4 900 руб.

Тогда дисконт составит:

Б = РУ - РУ = 5000 - 4900 = 100 руб.

Б = 5000 х 90/360 х 0,08 = 100 руб.

Следовательно, предъявитель векселя получит сумму 4900 руб., а банк при наступлении срока векселя реализует дисконт в размере 100 руб.

По сложной учётной ставке текущая величина составит:

РУ = РУ х (1 - !)п (1.36)

При использовании сложной учётной ставки процесс дисконтирования происходит с прогрессирующим замедлением, т. к. учётная ставка каждый раз применяется к уменьшаемой на величину дисконта величине.

Пример. Определить величину суммы, выдаваемую заёмщику, если он обязуется вернуть её через два года в размере 55 тыс. руб. Банк определяет свой доход с использованием годовой учётной ставки 30%.

Используя формулу дисконтирования по сложной учётной ставке, опре­деляем:

РУ = 55000 х (1 - 0,3)2 = 26 950 руб.

Заёмщик может получить ссуду в размере 26 950 руб., а через два года вернёт 55 тыс. руб.

Объединение платежей можно производить и на основе учётной ставки, например, при консолидировании векселей. В этом случае, сумма консолиди­рованного платежа рассчитывается по следующей формуле:

РУб =1 РУ} х (1 - с! х ^)Л (1.37)

где ^ - интервал времени между сроками векселей.

Пример. Вексель на сумму 10 тыс. руб. со сроком погашения 10.06, а также вексель на сумму 20 тыс. руб. со сроком погашения 01.08 заменяются одним с продлением срока до 01.10. При объединении векселей применяется учётная ставка 25%. Определить сумму консолидированного векселя.

Для использования формулы консолидированного платежа необходимо определить срок пролонгации векселей:

ї1 = 21 (июнь) + 31 (июль) + 31 (август) + + 30 (сентябрь) + 1 (октябрь) - 1 = 113 дней, = 31 (август) + 30 (сентябрь) + 1(октябрь) - 1 = 61 день.

Тогда, сумма консолидированного векселя будет равна: ¥У0 = 10000 х (1 - 113/360 х 0,25)-1 + 20000 х (1 - 61/360 х 0,25)-1 = 31 736 руб.

Таким образом, сумма консолидированного векселя с датой погашения 01.10 составит 31 736 руб.

В том случае, когда учёту подлежит долговое обязательство, по которому предусматривается начисление процентов, происходит совмещение начисления процентов по процентной ставке и дисконтирования по учётной ставке:

РУ2 = РУ1 х (1 + п х і) х (1 - п2 х й), (1.38)

где РУ1 - первоначальная сумма долга;

РУ2 - сумма, получаемая при учёте обязательства;

п1 - общий срок платёжного обязательства;

п2 - срок от момента учёта до погашения.

Пример. Обязательство уплатить через 100 дней сумму долга в размере 50 тыс. руб. с начисляемыми на неё точными процентами по ставке 40%, было учтено за 25 дней до срока погашения по учётной ставке 25%. Определить сум­му, полученную при учёте обязательства.

Следует обратить внимание на различие временных баз, используемых при наращении и учёте:

РУ2 = 50000 х (1 + 100/365 х 0,4) х (1 - 25/360 х 0,25) = 54 516 руб.

Следовательно, сумма, получаемая при учёте данного обязательства, со­ставит 54 516 руб.

Простейшим видом финансовой сделки является однократное предоставление в долг некоторой суммы PV с условием, что через некоторое время t будет возвращена большая сумма FV. Как известно, результативность подобной сделки может быть охарактеризована двояко: либо с помощью абсолютного показателя - прироста (FV - PV), либо путем расчета некоторого относительно показателя. Абсолютные показатели чаще всего не подходят для подобной оценки ввиду их несопоставимости в пространственно-временном аспекте. Поэтому пользуются специальным коэффициентом - ставкой.

Этот показатель рассчитывается отношением приращения исходной суммы к базовой величине, в качестве которой можно брать либо PV либо FV. Таким образом, ставка рассчитывается по одной из двух формул:

темп прироста ("процентная ставка ", "процент ", "рост ", "ставка процента ", "норма прибыли ", "доходность ")

темп снижения (учетная ставка ", "дисконт ", "коэффициент дисконтирования ")

Очевидно, что обе ставки взаимосвязаны, т.е. зная один показатель, можно рассчитать другой:

Оба показателя могут выражаться либо в долях единицы, либо в процентах. Различие в этих формулах состоит в том, какая величина берется за базу сравнения: в формуле (Матем. 1) - исходная сумма, в формуле (Матем. 2) - возвращаемая сумма.

Очевидно, что r t > d t, а степень расхождения зависит от уровня процентных ставок, имеющих место в конкретный момент времени.

В прогнозных расчетах, например, при оценке инвестиционных проектов, как правило имеют дело с процентной ставкой, хотя обычно это не оговаривается. Объяснение этому может быть, например, таким.

1) Во-первых, анализ инвестиционных проектов, основанный на формализованных алгоритмах, может выполняться лишь в относительно стабильной экономике, когда уровни процентных ставок невелики и сравнительно предсказуемы в том смысле, что их значения не могут измениться в несколько раз или на порядок. Если вероятна значительная вариабельность процентных ставок, должны применяться другие методы анализа и принятия решений, основанные, главным образом, на неформализованных критериях. При разумных значениях ставок расхождения между процентной и дисконтной ставками, как мы видели, относительно невелики и потому в прогнозных расчетах вполне может быть использована любая из них.

2) Во-вторых, прогнозные расчеты не требуют какой-то повышенной точности, поскольку результатами таких расчетов являются ориентиры, а не "точные" оценки. Поэтому, исходя из логики подобных расчетов, предполагающих их многовариантность, а также использование вероятностных оценок и имитационных моделей, излишняя точность не требуется.

Итак, в любой простейшей финансовой сделке всегда присутствуют три величины, две из которых заданы, а одна является искомой.

Процесс, в котором заданы исходная сумма и процентная ставка, в финансовых вычислениях называется процессом наращения . Процесс, в котором заданы ожидаемая в будущем к получению (возвращаемая) сумма и коэффициент дисконтирования, называется процессом дисконтирования . В первом случае речь идет о движении денежного потока от настоящего к будущему, во втором - о движении от будущего к настоящему (см. рис.).


Экономический смысл финансовой операции, задаваемой формулой (Матем. 1), состоит в определении величины той суммы, которой будет или желает располагать инвестор по окончании этой операции. Поскольку из формулы (Матем. 1):

то видно, что время генерирует деньги.

Величина FV показывает как бы будущую стоимость "сегодняшней" величины PV при заданном уровне доходности.

Экономический смысл дисконтирования заключается во временном упорядочении денежных потоков различных временных периодов. Коэффициент дисконтирования показывает, какой ежегодный процент возврата хочет (или может) иметь инвестор на инвестируемый им капитал. В этом случае искомая величина PV показывает как бы текущую, "сегодняшнюю" стоимость будущей величины FV.

Предыдущая

Процесс определения текущей стоимости денег называется дисконтированием.

Наиболее распространенное применение дисконтирования :
1) авансовое удержание с заемщика процентов в момент выдачи ссуды, т.е. до наступления срока ее погашения; 2) учет векселей в банке, когда банк, принимая вексель от предъявителя, выдает ему обозначенную на векселе сумму до срока его погашения. При этом банк удерживает в свою пользу проценты (дисконт) от суммы векселя за время, оставшееся до срока гашения; 3) оценка облигаций путем дисконтирования будущих купонных платежей, а также оценка акций на основе использования модели дисконтирования дивидендов.

Выделяют два вида дисконтирования – математическое дисконтирование (приведение по вкладу) и банковский учет (приведение по платежу).

Математическое дисконтирование определяет современное или приведенное значение Р на некоторый момент времени T, которое соответствует заданному значению F в другой момент времени t. Таким образом, математическое дисконтирование – это формула сравнения денежных сумм в любые моменты времени. Можно еще определить математическое дисконтирование как приведение по вкладу Р – это такой подход к расчету искомой предшествующей суммы Р, который дает сумму F (известную к началу расчета) при начислении процентов (простых или сложных) через n периодов. В этом случае за базовую величину, то есть за 100% принимается размер вклада Р.

Величину Р, найденную с помощью процесса дисконтирования, называют в зависимости от контекста приведенной (современной, текущей, капитализированной) стоимостью.

Приведем некоторые из формул математического дисконтирования.



1. Дисконтированное значение будущей суммы вклада по простой процентной ставке равно:

где r – простая годовая процентная ставка;

n – период начисления процентов;

k D - коэффициент дисконтирования (приведения), равный . Он показывает, какую долю составляет Р в величине F при простой процентной ставке.

2. Дисконтированное значение будущей суммы вклада по сложной процентной ставке равно:

где r с – сложная процентная ставка за единичный период начисления;

n – число периодов начисления процентов;

k DC - коэффициент дисконтирования, равный . Он показывает, какую долю составляет Р в величине F при сложной процентной ставке.

Формулы (1) и (2) используются в частности для сравнения потоков платежей и при расчете стоимости облигаций и прочих ценных бумаг.

Пример 1. Из какого капитала можно получить 3,4 млн. руб. через 3 года наращения по простым процентам при ставке 12%?

Решение . Р=3,4/ (1*30,12)=2,5 млн. руб. Дисконт=Р 2 -Р 1 =F-P=3,4-2,5=0,9 млн. руб.

Пример 2. Через полгода после заключения финансового соглашения о получении кредита должник обязан заплатить 2,14 тыс. руб. Какова первоначальная величина кредита, если он выдан под 14% годовых и начисляются обыкновенные проценты с приближенным числом дней?

Решение . Д=F-P=2,14-2=0,14 т.р.

Банковское дисконтирование или приведение по платежу (второй подход) состоит в том, что неизвестен размер платежа, к которому придем при удержании с конечной суммы F за срок n. В этом случае за 100% берется будущая сумма F.

Формула дисконтирования приведением по платежу по простым процентам: P n =F-n*d*F=F(1-nd), где d – учетная ставка, которая фиксирует процентное или долевое уменьшение суммы F на один период назад.

Формула дисконтирования приведением по платежу по сложным процентам: P n =F(1-d) n .

Банковский учет заключается в покупке денежных обязательств банком. Поэтому далее в задачах будет использовано понятие векселя. Вексель – это долговая расписка, содержащая обязательство выплатить определенную денежную сумму (номинал векселя F) в конкретный срок. Вексель может быть простым, переводным, коммерческим, казначейским и т.д. Чаще всего работа с векселем – это принятие векселя к погашению. Учет векселя означает оплату векселя с дисконтом, т.е. со скидкой с его номинала. Дисконт представляет собой проценты, начисленные за время n от дня дисконтирования до дня погашения векселя на сумму F, подлежащую оплате в конце срока. Чем выше значение дисконтной ставки, тем большую сумму удерживает банк в свою пользу. Вексель, допускающий участие третьих лиц, называется переводным или траттой. Учет векселя чаще всего осуществляется способом: приближенное число дней в году (360) и точное число дней в периоде от момента учета векселя до момента погашения (365/360). Приведем некоторые из формул банковского учета, содержащие дисконт.

Для простой учетной ставки:

1. Если срок n от даты учета до даты погашения составляет часть года, то дисконт определяется по формуле где

d –относительная величина годовой учетной ставки;

t- период начисления в днях; К- количество дней в году.

2. Цена покупки векселя банком или сумма, выдаваемая предъявителю учитываемого денежного обязательства по простой учетной ставке, рассчитывается по формуле:

F-номинальная сумма данного обязательства;

Р- цена покупки векселя банком или это деньги, которые получает владелец векселя, в случае операции дисконтирования;

D d -дисконт, сумма процентных денег;

(1-nd) – коэффициент дисконтирования по простой учетной ставке.

3. Процентный доход покупателя (банка) векселя по простой ставке:
Для сложной учетной ставки:

4. Формула для определения стоимости капитала, учтенного за n лет при m-кратном дисконтировании в течение года, примет вид:

С ростом числа дисконтирования в году величина учтенного капитала возрастает.

Для облегчения расчетов при удержании сложных процентов используются дисконтные множители , которые показывают, во сколько раз уменьшится сумма при удержании с нее сложных процентов по ставке d в течение n промежутков удержания: Dis(n,d)=(1-d) n .

5. Соотношение между простыми годовыми процентными ставками r и d, обеспечивающими через период времени n получение одной и той же наращенной величины F из начального капитала Р: d(1+nr)=r.

Ставки d и r, связанные между собой этим соотношением называются эквивалентными, так как они приводят к одинаковому финансовому результату.

Пример . 3. Найти учетную ставку, эквивалентную простой процентной ставке 19%, при наращении капитала за год.

Решение . N=1, r =0,19, d=0,19/(1+0,19)»0,15966, d»16%. Т. о., учет за год по учетной ставке 16% приносит такой же доход, как наращение простыми процентами по ставке 19%.

Если время измеряется в днях t, n=t/T, где Т – временная база, равная количеству дней в году. В этом случае

Пример 4. Банк учитывает вексель за 210 дней до срока по учетной ставке 12%, используя временную базу в 360 дней. Определить доходность такой операции по процентной ставке при временной базе, равной 365.

Решение . Если разные временные базы, то получим равенство: . Отсюда следует, что

нахождения сложной годовой учетной ставки.

Пример 5. Вексель был учтен за полтора года до срока, при этом владелец векселя получил 0,8 от написанной на векселе суммы. По какой сложной годовой учетной ставке был учтен этот вексель?

Решение . P=0,8; n=1,5; при m=1 d=1-0,8 1/1,5 =0,1382, т.е. d=13,82%

Пример 6. Векселедержатель предъявил для учета вексель на сумму 50 т.р. со сроком погашения 28.09.1997 г. Вексель предъявлен 13.09.1997 г. Банк согласился учесть вексель по учетной ставке 30% годовых. Определить сумму, которую получит векселедержатель.

Решение . P=f*(1-nd)=50*(1-15/360*0,3)=49,375 т.р.

Непрерывное наращение и дисконтирование. Уменьшая частоту начисления в пределе можно перейти к непрерывным процентам. Максимально возможное наращение осуществляется при бесконечном дроблении годового интервала.

Где е примерно равно 2,718281 –число Эйлера и r (¥) =d -обозначение непрерывной ставки и называют ее силой роста. Сила роста характеризует интенсивность наращения за год при непрерывном начислении процентов.

Аналогично другим множителям наращения е d n равен индексу роста суммы Р за n лет.

Непрерывное начисление процентов используется при анализе сложных финансовых задач (при выборе и обосновании инвестиционных решений). Также бывает целесообразно предполагать при оценке работы учреждения за период, в котором платежи поступают многократно, что накапливаемые суммы непрерывно меняются во времени, и применять непрерывное начисление процентов.

Бывают ситуации, когда непрерывное начисление процентов применяется непосредственно и при работе с клиентами.

Пример. На вклад в 2 тыс. руб. начисляются непрерывные проценты. Найти наращенную сумму за 7 лет, если сила роста изменяется следующим образом: в первые 2 года равна 8%, в следующие три года 10% и в каждый оставшийся год увеличивается на о,5%.

Решение .

Кредитные операции также связаны с дисконтированием. Рассмотрим операцию удержания процентов с суммы, взятой заемщиком в кредит. Проценты начисляются в начале интервала начисления и заемщик получает сумму Р за вычетом процентных денег D из суммы кредита S, которую следует вернуть. Удержание процентов можно проводить по простым и сложным процентам:

1. , где d – простая учетная ставка;

2. , где d с - сложная учетная ставка;

3. Срок, на который выдан кредит, рассчитывается по формуле: ,

4. Учетная ставка рассчитывается по формуле:

5. При непрерывном исчислении процентов, т.е. при мультиплицирующий множитель М(m, r/m) имеет предел, равный е r , где е-основание натуральных логарифмов (е=2,71). Непрерывным наращением процентов по ставке r называется увеличение суммы в е r раз за единичный промежуток начисления. Непрерывным дисконтированием называется обратная операция непрерывному наращению, т.е. уменьшение суммы в е i раз за единичный промежуток. Также справедливо следующее соотношение: .

Пример .На сумму в 2 тыс. руб. начисляются непрерывные проценты по ставке 8%. Определить наращенную сумму за 5 лет.

В процессе сравнения стоимости денежных средств при их инвестировании и возврате принято использовать два основных понятия: будущая и настоящая стоимость денег.

Будущая стоимость денег - сумма инвестированных в настоящий момент средств, в которую они превратятся через определенный период времени с учетом определенной ставки процента. Определение будущей стоимости денег связано с процессом наращения этой стоимости, который представляет собой поэтапное увеличение суммы вклада путем присоединения к первоначальному его размеру суммы процента (процентных платежей). Эта сумма рассчитывается по процентной ставке. В инвестиционных расчетах ставка применяется не только как инструмент наращения стоимости денежных средств, но и в более широком смысле как измеритель степени доходности инвестиционных операций.

Настоящая стоимость денег представляет собой сумму будущих денежных поступлений, приведенных с учетом определенной ставки процента (дисконтной ставки) к настоящему периоду. Определение настоящей стоимости денег связано с процессом дисконтирования этой стоимости, который представляет собой операцию, обратную наращению при обусловленном конечном размере денежных средств. В этом случае сумма процента (дисконта) вычитается из конечной суммы (будущей стоимости) денежных средств. Такая ситуация возникает в тех случаях, когда определяют, сколько средств необходимо инвестировать сегодня для того, чтобы через определенное время получить заранее обусловленную их сумму.

Для того чтобы обезопасить себя от инфляции, риска неполучения дохода, инвестор определяет для себя требуемую норму доходности на вложенный капитал, которая полностью возместит ему все моральные и материальные неудобства. Количественной мерой этой величины является процентная ставка. С ее помощью может быть определена как сегодняшняя (текущая, приведенная) стоимость будущих денежных потоков, так и будущая стоимость “сегодняшних” денег (если деньги будут отданы в кредит). В первом случае говорят об операции дисконтирования, или приведения будущей стоимости к ее современной величине, во втором случав выполняется наращение, поэтому будущую стоимость называют наращенной.

Логика построения основных алгоритмов достаточно проста и основана на следующей идее. Простейшим видом финансовой сделки является однократное предоставление в долг некоторой суммы РV с условием, что через некоторое время t будет возвращена большая сумма PV. Результативность подобной сделки может быть охарактеризована двояко: либо с помощью абсолютного показателя -- прироста (FV - РV), либо путем расчета некоторого относительного показателя. Абсолютные показатели чаще всего не подходят для подобной оценки ввиду их несопоставимости в пространственно-временном аспекте. Поэтому пользуются специальным показателем -- ставкой. Этот показатель рассчитывается отношением приращения исходной суммы к базовой величине, в качестве которой можно брать либо РV, либо FV. Таким образом, ставка за время t рассчитывается по одной из двух формул:

В финансовых вычислениях первый показатель имеет названия “процентная ставка”, “ставка процента”, “процент”, “рост”, “норма прибыли”), “доходность”, а второй -- “учетная ставка”, “дисконт”. Очевидно, что обе ставки взаимосвязаны, т.е. зная один показатель, можно рассчитать другой:

r= или d= (3)

Оба показателя могут выражаться либо в десятичных дробях, либо (как правило, на практике) в процентах. Различие в этих формулах состоит в том, какая величина берется за базу сравнения: в формуле (1)-- исходная сумма, в формуле (2)-- возвращаемая (ожидаемая) сумма. Из определения показателей следует, что r > 0 и 0< FV= РV (сколько дают в долг, столько и получают назад) и можно считать, что финансовой сделки как таковой просто нет. Случаю же d = 1 соответствует РV = 0, т.е. не предоставляя никакой суммы в долг через некоторое время t получаем FV, тем самым, фактически, осуществляя грабеж.

Степень расхождения между r и d зависит от уровня процентных ставок, имеющих место в конкретный момент времени. Так, если r= 7%, то d= 6,54%, т.е. расхождение сравнительно невелико; если r = 70%, то d= 41,18%, т.е. ставки существенно различаются по величине.

Процесс, в котором заданы исходная сумма и ставка, в финансовых вычислениях называется наращением, искомая величина -- наращенной суммой, а ставка -- ставкой наращения. Процесс, в котором заданы ожидаемая в будущем к получению (возвращаемая) сумма и ставка, называется дисконтированием , искомая величина -- приведенной суммой, а ставка -- ставкой дисконтирования. В первом случае речь идет о движении денежного потока от настоящего к будущему, во втором -- о движении от будущего к настоящему (рис. 1.1).


Экономический смысл финансовой операции, задаваемой формулой (1), состоит в определении величины той суммы, которой будет или желает располагать инвестор по окончании этой операции. Поскольку из формулы (1)

FV=РV (1+ r) (4)

то FV > РV(так как 1 +г >1), т.е. время генерирует деньги.

Величина РУ, определяемая по формуле (1.7), показывает ка1 бы будущую стоимость “сегодняшней” величины РУ при задан ном уровне доходности г,.

Экономический смысл дисконтирования заключается во временном упорядочении денежных потоков различных временных периодов. Одна из интерпретаций коэффициента дисконтирования показывает, какой ежегодный процент возврата хочет (или может) иметь инвестор на инвестируемый им капитал. В этом случае искомая величина Р V показывает как бы текущую, “сегодняшнюю” стоимость будущей величины FV.

фининсовых

решений

Тема 1

Временная стоимость денег.

Операции наращения и дисконтирования

В практических финансовых операциях суммы денег вне зависимости от их назначения или происхождения, так или иначе, но обязательно связываются с конкретными моментами или периодами времени. Для этого в контрактах фиксируются соответствующие сроки, даты, периодичность выплат. Фактор времени, особенно в долгосрочных операциях, играет не меньшую, а иногда даже большую роль, чем размеры денежных сумм. Необходимость учета временного фактора вытекает из сущности финансирования и кредитования и выражается в принципе неравноценности денег, относящихся к разным моментам времени (или стоимость денег во времени –timevalueofmoney). Очевидно, что 100 000 руб., полученных через 5 лет, не равноценны этой же сумме поступившей сегодня.

Временная стоимость денег обуславливается наличием двух причин:

1) обесценением денежной наличности с течением времени. Так, если предприятие имеет свободные денежные средства в раз­мере 10,0 млн. руб., а инфляция, то есть обесценение денег, состав­ляет 20% в год, то это означает, что уже через год, в случае если предприятие никак их не инвестирует, они уменьшатся по своей покупательной способности и составят в текущих ценах только 8 млн. руб.;

2) обращением капитала (денежных средств). Предположим, что предприятие имеет возможность участвовать в инвестиционном проекте, который может принести доход в размере 20,0 тыс. руб. по истечении двух лет. Имеется возможность выбора варианта получе­ния дохода: либо по 10 тыс. руб. по истечении каждого года, либо единовременное получение всей суммы в конце двухлетнего периода. Очевидно, что второй вариант получения доходов менее выгоден по сравнению с первым, так как сумма, полученная в конце первого года, может принести дополнительные доходы.

(В Индии, на химическом заводе американской компании, произошла крупная авария. В качестве компенсации пострадавшим первоначально предложили выплатить 200 млн. долл. в течение 35 лет. Предложение было отклонено. Для иллюстрации влияния фактора времени скажем, что 57,6 млн. долл. в банк под 10% годовых обеспечит последовательную выплату 200 млн. долл. Т.е. 57.6 млн. выплаченных сегодня равнозначны 200 млн. долл. погашаемым ежемесячно в равных долях)

Простейшим видом финансовой операции является однократ­ное предоставление в долг некоторой суммы PV(presentvalue) с условием, что через какое-то времяtбудет возвращена большая суммаFV(futurevalue).

Результативность подобной сделки может быть охарактеризо­вана двояко: либо с помощью абсолютного показателя либо путем расчета некоторого относительного показателя.

Абсолютным показателем является разность I=FV-PV, которая называется процентом (interest) или суммой процентных денег. Это величина дохода от предоставления в долг денежной суммы PV.

Однако для оценки эффективности финансовых операций абсолютные пока­затели мало применимы ввиду их несопоставимости. Поэтому пользуются специальным коэффициентом – став­кой .

Под процентной ставкой (rate of interest) – понимается относительная величина дохода за фиксированный отрезок времени, т.е. отношение дохода (процентных денег) к сумме долга за единицу времени.

Временной интервал, которому соответствует процентная ставка, называют периодом начисления (год, полугодие, квартал, месяц, даже день).

Размер процентной ставки зависит от ряда объективных и субъективных факторов: общего состояния экономики, в том числе денежно кредитного рынка, кратковременных и долгосрочных ожиданий его динамики, вида сделки, ее валюты, срока кредита и т.д.

В общем виде процентная ставка может быть представлена как сумма четырех основных компонент, определяющих величину r :

r = i + f + E + g

где i – норма процента, отражающая компенсацию кредитору за от­каз использовать в других целях предоставленную сумму в течение времениt (пока не вернут долг);

f – так называемый фактор риска (эффект Фишера), представ­ляющий собой для кредитора компенсацию за неопределенность (риск) неполучения процентов или всей суммы вообще при наступле­нии срока возврата долга;

Е – инфляционная добавка, т.е. компенсация за возможное из­менение в уровне цен, за уменьшение покупательной способности де­нег вследствие инфляции;

g компенсация, зависящая от продолжительности срока, на который ссужены деньги, и тем большая, чем длительнее этот срок.

В финансовом анализе процентная ставка применяется не только как инструмент наращения суммы долга, но и в более широком смысле – как измеритель степени доходности (эффективности) любой финансовой операции), независимо от того имел место или нет факт выдачи денег в долг и процесс наращения этой суммы.

Существует два принципа расчета процентов – наращение на сумму долга и скидка с конечной суммы задолженности. Соответственно применяют ставку наращения (interest base rate) и учетную ставку (discount base rate). Оба вида ставок применяются для решения сходных задач. Однако для ставки наращения прямой задачей является определение наращенной суммы, обратной дисконтирование. Для учетной ставки наоборот, прямая задача заключается в дисконтировании, обратная - в наращении.

Для расчета процентной ставки используется сле­дующая формула:

Для расчета учетной ставки используется сле­дующая формула:

Оба вышеназванных показателя взаимосвязаны между собой, т.е. зная один показатель можно рассчитать и другой:

Оба показателя могут выражаться либо в десятичных дробях, либо в процентах.

Из определения показателей следует, что r › 0 и 0 ‹ d ‹ 1. Слу­чай, когдаr = 0 иd = 0, не рассматривается, так как тогдаFV = PV , т.е. можно считать, что финансовой сделки как таковой просто нет. Случай, когдаd = 1 соответствует PV = 0 , т.е. не предоставляется ни­какая сумма в долг, а через некоторое время получаем FV .

Степень расхождения между d(t) иr(t) зависит от уровня процентных ставок, имеющих место в конкретный момент времени. Так, еслиr = 7% , тоd = 6,54 , т.е. расхождение сравнительно невелико. Однако, еслиr = 70% , тоd = 41,18%, т.е. ставки существенно различаются по величине.

В прогнозных расчетах, например, при оценке инвестиционных проектов, как правило, имеют дело с процентной ставкой. Учетная ставка в основном используется в банковских операциях по учету векселей.

Процесс, в котором заданы исходная сумма и процентная ставка, в финансовых вычислениях называется процессом нараще­ния (компаундинг). Причем величинаFV показывает будущую стоимость «сего­дняшней» величиныPV при заданном уровне доходности.

Процесс, в котором заданы ожидаемая в будущем к получению (или возвращаемая) сумма и коэффициент дисконтирования, называ­ется процессом дисконтирования . Экономический смысл дисконтирования заключается во вре­менном упорядочении денежных потоков различных временных пе­риодов. При этом случае искомая величинаPV показывает текущую, «сегодняшнюю» стоимость будущей величиныFV.

В первом случае речь идет о движении денежного потока от на­стоящего к будущему, а во втором – о движении от будущего к на­стоящему.

Логика финансовых операций представлена на рис. 1.

Настоящее Будущее

Исходная сумма

Наращение Возвращаемая сумма

Процентная ставка

Ожидаемая к поступлению сумма

Приведенная сумма Дисконтирование

Коэффициент дисконти­рования

Рис. 1. Логика финансовых операций

Экономический смысл финансовой операции, которая пред­ставляется формулой (1), состоит в определении величины той суммы, которой будет или желает располагать инвестор по окончании этой операции. Поскольку из формулы (1) следует, что FV = PV * (1 + r t ) , то FV PV (так как (1 +r t) › 1), т.е. время генерирует деньги.

Естественно, такой же вывод можно сделать, используя фор­мулу (2), так как из нее следует, что PV = FV *(1 – d t ) , и справедливо нера­венство1 – d ‹ 1.

Как уже отмечалось выше, в качестве ставки наращения может вы­ступать как процентная, так и учетная ставка. Если наращенная сумма находится по формуле FV = PV *(1 + r t ) , то ставкой наращения является процентная ставка. С другой стороны, из формулыPV = FV *(1 – d ) следует, что наращен­ную сумму можно определять по формуле:

Поэтому в этом случае ставкой наращения является учетная ставка. Учетная ставка используется для наращения в случае учета векселя в банке, если рассматривать эту операцию с позиции банка.

Аналогичные рассуждения можно высказать и в связи с процессом дисконтирования. Если приведенная сумма находится по формуле PV = FV *(1 – d ) , то в качестве ставки приведения выступает учетная ставка. С дру­гой стороны, из формулыFV = PV *(1 + r ) следует, что приведенную сумму можно определить также по формуле. В этом случае в качестве ставки дисконтирования выступает процентная ставка.