Сложный банковский процент. Cложные проценты.

Сложный банковский процент. Cложные проценты.

Сложные проценты применяются в долгосрочных финансово-кредитных операциях, если проценты не выплачиваются периодически сразу после их начисления за прошедший интервал времени, а присоединяются к сумме долга. Присоединение начисленных процентов к сумме, которая служила базой для их определения, часто называют капитализацией процентов.

Формула наращения по сложным процентам

Пусть первоначальная сумма долга равна P , тогда через один год сумма долга с присоединенными процентами составит P (1+ i ) , через 2 года P (1+ i )(1+ i )= P (1+ i ) 2 , через n лет - P (1+ i ) n . Таким образом, получаем формулу наращения для сложных процентов

S=P(1+i) n , (19)

где S - наращенная сумма, i - годовая ставка сложных процентов, n - срок ссуды, (1+ i ) n - множитель наращения.

В практических расчетах в основном применяют дискретные проценты, т.е. проценты, начисляемые за одинаковые интервалы времени (год, полугодие, квартал и т.д.). Наращение по сложным процентам представляет собой рост по закону геометрической прогрессии, первый член которой равен P , а знаменатель (1+ i ).

Отметим, что при сроке n <1 наращение по простым процентам дает больший результат, чем по сложным, а при n >1 - наоборот. В этом нетрудно убедиться на конкретных числовых примерах. Наибольшее превышение суммы, наращенной по простым процентам, над суммой, наращенной по сложным процентам, (при одинаковых процентных ставках) достигается в средней части периода.

Формула наращения по сложным процентам,
когда ставка меняется во времени

В том случае, когда ставка сложных процентов меняется во времени, формула наращения имеет следующий вид

(20)

где i 1 , i 2 ,..., i k - последовательные значения ставок процентов, действующих в периоды n 1, n 2,..., nk соответственно.

Пример 6.

В договоре зафиксирована переменная ставка сложных процентов, определяемая как 20% годовых плюс маржа 10% в первые два года, 8% в третий год, 5% в четвертый год. Определить величину множителя наращения за 4 года.

Решение.

(1+0,3) 2 (1+0,28)(1+0,25)=2,704

Формула удвоения суммы

В целях оценки своих перспектив кредитор или должник может задаться вопросом: через сколько лет сумма ссуды возрастет в N раз при данной процентной ставке. Обычно это требуется при прогнозировании своих инвестиционных возможностей в будущем. Ответ получим, приравняв множитель наращения величине N :

А) для простых процентов

(1+ ni прост. ) = N , откуда

. (21)

Б) для сложных процентов

(1+ i сложн. ) n = N , откуда

. (22)

Особенно часто используется N =2. Тогда формулы (21) и (22) называются формулами удвоения и принимают следующий вид:

А) для простых процентов

, (23)

Б) для сложных процентов

. (24)

Если формулу (23) легко применять для прикидочных расчетов, то формула (24) требует применения калькулятора. Однако при небольших ставках процентов (скажем, менее 10%) вместо нее можно использовать более простую приближенную. Ее легко получить, если учесть, что ln 2  0,7, а ln (1+ i )  i . Тогда

n » 0,7/ i . (25)

Пример 7.

Решение.

а) При простых процентах:

лет.

б) При сложных процентах и точной формуле:

Года.

в) При сложных процентах и приближенной формуле:

n » 0,7/i = 0,7/0,1 =7 лет .

Выводы:

1) Одинаковое значение ставок простых и сложных процентов приводит к совершенно различным результатам.

2) При малых значениях ставки сложных процентов точная и приближенная формулы дают практически одинаковые результаты.

Начисление годовых процентов при дробном числе лет

При дробном числе лет проценты начисляются разными способами:

1) По формуле сложных процентов

S=P(1+i) n , (26)

2) На основе смешанного метода, согласно которому за целое число лет начисляются сложные проценты, а за дробное - простые

S=P(1+i) a (1+bi) , (27)

где n = a + b , a -целое число лет, b -дробная часть года.

3) В ряде коммерческих банков применяется правило, в соответствии с которым за отрезки времени меньше периода начисления проценты не начисляются, т.е.

S=P(1+i) a . (28)

Номинальная и эффективная ставки процентов

Номинальная ставка . Пусть годовая ставка сложных процентов равна j , а число периодов начисления в году m . Тогда каждый раз проценты начисляют по ставке j / m . Ставка j называется номинальной. Начисление процентов по номинальной ставке производится по формуле:

S=P(1+j/m) N , (29)

где N - число периодов начисления.

Если срок ссуды измеряется дробным числом периодов начисления, то при m разовом начислении процентов в году наращенную сумму можно рассчитывать несколькими способами, приводящими к различным результатам:

1) По формуле сложных процентов

S=P(1+j/m) N/ t , (30)

где N / t - число (возможно дробное) периодов начисления процентов, t - период начисления процентов,

2) По смешанной формуле

, (31)

где a - целое число периодов начисления (т.е. a = [ N / t ] - целая часть от деления всего срока ссуды N на период начисления t ),

b - оставшаяся дробная часть периода начисления ( b = N / t - a ).

Пример 8.

Размер ссуды 20 млн. руб. Предоставлена на 28 месяцев. Номинальная ставка равна 60% годовых. Начисление процентов ежеквартальное. Вычислить наращенную сумму в трех ситуациях: 1) когда на дробную часть начисляются сложные проценты, 2) когда на дробную часть начисляются простые проценты 3) когда дробная часть игнорируется. Результаты сравнить.

Решение.

Начисление процентов ежеквартальное. Всего имеется кварталов.

1) = 73,713 млн. руб.

2) = 73,875 млн. руб.

3) S=20(1+0,6/4) 9 = 70,358 млн . руб .

Из сопоставления наращенных сумм видим, что наибольшего значения она достигает во втором случае, т.е. при начислении на дробную часть простых процентов.

Эффективная ставка показывает, какая годовая ставка сложных процентов дает тот же финансовый результат, что и m -разовое наращение в год по ставке j / m .

Если проценты капитализируются m раз в год, каждый раз со ставкой j / m , то, по определению, можно записать равенство для соответствующих множителей наращения:

(1+i э ) n =(1+j/m) mn , (32)

где i э - эффективная ставка, а j - номинальная. Отсюда получаем, что связь между эффективной и номинальной ставками выражается соотношением

(33)

Обратная зависимость имеет вид

j=m[(1+i э ) 1/m -1]. (34)

Пример 9.

Вычислить эффективную ставку процента, если банк начисляет проценты ежеквартально, исходя из номинальной ставки 10% годовых.

Решение

i э =(1+0,1/4) 4 -1=0,1038, т.е. 10,38%.

Пример 10.

Определить какой должна быть номинальная ставка при ежеквартальном начислении процентов, чтобы обеспечить эффективную ставку 12% годовых.

Решение.

j =4[(1+0,12) 1/4 -1]=0,11495, т.е. 11,495%.

Учет (дисконтирование) по сложной ставке процентов

Здесь, также как и в случае простых процентов, будут рассмотрены два вида учета - математический и банковский.

Математический учет . В этом случае решается задача обратная наращению по сложным процентам. Запишем исходную формулу для наращения

S=P(1+i) n

и решим ее относительно P

, (35)

где

(36)

учетный или дисконтный множитель.

Если проценты начисляются m раз в году, то получим

, (37)

где

(38)

дисконтный множитель.

Величину P , полученную дисконтированием S , называют современной или текущей стоимостью или приведенной величиной S . Суммы P и S эквивалентны в том смысле, что платеж в сумме S через n лет равноценен сумме P , выплачиваемой в настоящий момент.

Разность D = S - P называют дисконтом .

Банковский учет . В этом случае предполагается использование сложной учетной ставки. Дисконтирование по сложной учетной ставке осуществляется по формуле

P=S(1-d сл ) n , (39)

где d сл - сложная годовая учетная ставка.

Дисконт в этом случае равен

D=S-P=S-S(1-d сл ) n =S. (40)

При использовании сложной учетной ставки процесс дисконтирования происходит с прогрессирующим замедлением, так как учетная ставка каждый раз применяется к сумме, уменьшенной за предыдущий период на величину дисконта.

Номинальная и эффективная учетные ставки процентов

Номинальная учетная ставка . В тех случаях, когда дисконтирование применяют m раз в году, используют номинальную учетную ставку f . Тогда в каждом периоде, равном 1/ m части года, дисконтирование осуществляется по сложной учетной ставке f / m . Процесс дисконтирования по этой сложной учетной m раз в году описывается формулой

P=S(1-f/m) N , (41)

где N - общее число периодов дисконтирования (N = mn ).

Дисконтирование не один, а m раз в году быстрее снижает величину дисконта.

Эффективная учетная ставка . Под эффективной учетной ставкой понимают сложную годовую учетную ставку, эквивалентную (по финансовым результатам) номинальной, применяемой при заданном числе дисконтирований в году m .

В соответствии с определением эффективной учетной ставки найдем ее связь с номинальной из равенства дисконтных множителей

(1-f/m) mn =(1-d сл ) n ,

из которого следует, что

d сл =1-(1-f/m) m . (42)

Отметим, что эффективная учетная ставка всегда меньше номинальной.

Наращение по сложной учетной ставке. Наращение является обратной задачей для учетных ставок. Формулы наращения по сложным учетным ставкам можно получить, разрешая соответствующие формулы для дисконтирования (39 и 41) относительно S . Получаем

из P=S(1-d сл) n

, (43)

а из P = S (1- f / m ) N

. (44)


Пример 11.

Какую сумму следует проставить в векселе, если реально выданная сумма равна 20 млн. руб., срок погашения 2 года. Вексель рассчитывается, исходя из сложной годовой учетной ставки 10%.

Решение.

Млн. руб.

Пример 12.

Решить предыдущую задачу при условии, что наращение по сложной учетной ставке осуществляется не один, а 4 раза в год.

Решение.

Млн. руб.

Наращение и дисконтирование

Наращенная сумма при дискретных процентах определяется по формуле

S = P (1+ j / m ) mn ,

где j - номинальная ставка процентов, а m - число периодов начисления процентов в году.

Чем больше m , тем меньше промежутки времени между моментами начисления процентов. В пределе при m ® ¥ имеем

S= lim P(1+j/m) mn =P lim [(1+j/m) m ] n . (45)

m ® ¥ m ® ¥

Известно, что

lim (1+j/m) m =lim [(1+j/m) m/j ] j =e j ,

m ® ¥ m ® ¥

где e - основание натуральных логарифмов.

Используя этот предел в выражении (45), окончательно получаем, что наращенная сумма в случае непрерывного начисления процентов по ставке j равна

S = Pe jn . (46)

Для того, чтобы отличать ставку непрерывных процентов от ставок дискретных процентов, ее называют силой роста и обозначают символом d . Тогда

S=Pe d n . (47)

Сила роста d представляет собой номинальную ставку процентов при m ® ¥ .

Дисконтирование на основе непрерывных процентных ставок осуществляется по формуле

P=Se - d n . (48)

Связь дискретных и непрерывных процентных ставок

Дискретные и непрерывные процентные ставки находятся в функциональной зависимости, благодаря которой можно осуществлять переход от расчета непрерывных процентов к дискретным и наоборот. Формулу эквивалентного перехода от одних ставок к другим можно получить путем приравнивания соответствующих множителей наращения

(1+i) n =e d n . (49)

Из записанного равенства следует, что

d = ln (1+ i ) , (50)

i = e d -1 . (51)

Пример 13.

Годовая ставка сложных процентов равна 15%, чему равна эквивалентная сила роста,

Решение.

Воспользуемся формулой (50)

d = ln (1+ i )= ln (1+0,15)=0,13976,

т.е. эквивалентная сила роста равна 13,976%.

Расчет срока ссуды и процентных ставок

В ряде практических задач начальная ( P ) и конечная (S ) суммы заданы контрактом, и требуется определить либо срок платежа, либо процентную ставку, которая в данном случае может служить мерой сравнения с рыночными показателями и характеристикой доходности операции для кредитора. Указанные величины нетрудно найти из исходных формул наращения или дисконтирования. По сути дела, в обоих случаях решается в известном смысле обратная задача.

Срок ссуды

При разработке параметров соглашения и оценивании сроков достижения желательного результата требуется определить продолжительность операции (срока ссуды) через остальные параметры сделки. Рассмотрим этот вопрос подробнее.

i .

S=P(1+i) n

следует, что

(52)

где логарифм можно взять по любому основанию, поскольку он имеется как в числителе, так и в знаменателе.

m раз в году из формулы

S=P(1+j/m) mn

получаем

(53)

d . Из формулы

P=S(1-d) n

имеем (54)

m раз в году. Из

P=S(1-f/m) mn

приходим к формуле

(55)

При наращивании по постоянной силе роста. Исходя из

S = Pe d n

получаем

ln ( S / P )= d n . (56)

Расчет процентных ставок

Из тех же исходных формул, что и выше, получим выражения для процентных ставок.

А) При наращивании по сложной годовой ставке i . Из исходной формулы наращения

S=P(1+i) n

следует, что

(57)

Б) При наращивании по номинальной ставке процентов m раз в году из формулы

S=P(1+j/m) mn

получаем (58)

В) При дисконтировании по сложной годовой учетной ставке d . Из формулы

P=S(1-d) n

имеем (59)

Г) При дисконтировании по номинальной учетной ставке m раз в году. Из

P=S(1-f/m) mn

приходим к формуле

(60)

Д) При наращивании по постоянной силе роста. Исходя из

S = Pe d n

получаем

(61)

Начисление процентов и инфляция

Следствием инфляции является падение покупательной способности денег, которое за период n характеризуется индексом J n . Индекс покупательной способности равен обратной величине индекса цен J p , т.е.

J n =1/ J p . (62)

Индекс цен показывает во сколько раз выросли цены за указанный промежуток времени.

Наращение по простым процентам

Если наращенная за n лет сумма денег составляет S , а индекс цен равен J p , то реально наращенная сумма денег, с учетом их покупательной способности, равна

C=S/J p . (63)

Пусть ожидаемый средний годовой темп инфляции (характеризующий прирост цен за год) равен h . Тогда годовой индекс цен составит (1+ h ).

Если наращение производится по простой ставке в течение n лет, то реальное наращение при темпе инфляции h составит

(64)

где в общем случае

(65)

и, в частности, при неизменном темпе роста цен h ,

J p =(1+h) n . (66)

Процентная ставка, которая при начислении простых процентов компенсирует инфляцию, равна

(67)

Один из способов компенсации обесценения денег заключается в увеличении ставки процентов на величину так называемой инфляционной премии. Скорректированная таким образом ставка называется брутто-ставкой . Брутто-ставка, которую мы будем обозначать символом r , находится из равенства скорректированного на инфляцию множителя наращения по брутто-ставке множителю наращения по реальной ставке процента

(68)

откуда

(69)

Наращение по сложным процентам

Наращенная по сложным процентам сумма к концу срока ссуды с учетом падения покупательной способности денег (т.е. в неизменных рублях) составит

(70)

где индекс цен определяется выражением (65) или (66), в зависимости от непостоянства или постоянства темпа инфляции.

В этом случае падение покупательной способности денег компенсируется при ставке i = h , обеспечивающей равенство C = P .

Применяются два способа компенсации потерь от снижения покупательной способности денег при начислении сложных процентов.

А) Корректировка ставки процентов , по которой производится наращение, на величину инфляционной премии. Ставка процентов, увеличенная на величину инфляционной премии, называется брутто-ставкой. Будем обозначать ее символом r . Считая, что годовой темп инфляции равен h , можем написать равенство соответствующих множителей наращения

(71)

где i - реальная ставка.

Отсюда получаем формулу Фишера

r=i+h+ih . (72)

То есть инфляционная премия равна h + ih .

Б) Индексация первоначальной суммы P . В этом случае сумма P корректируется согласно движению заранее оговоренного индекса. Тогда

S=PJ p (1+i) n . (73)

Нетрудно заметить, что и в случае А) и в случае Б) в итоге мы приходим к одной и той же формуле наращения (73). В ней первые два сомножителя в правой части отражают индексацию первоначальной суммы, а последние два - корректировку ставки процента.

Измерение реальной ставки процента

На практике приходится решать и обратную задачу - находить реальную ставку процента в условиях инфляции. Из тех же соотношений между множителями наращения нетрудно вывести формулы, определяющие реальную ставку i по заданной (или объявленной) брутто-ставке r .

При начислении простых процентов годовая реальная ставка процентов равна

(74)

При начислении сложных процентов реальная ставка процентов определяется следующим выражением

(75)

Практические приложения теории

Рассмотрим некоторые практические приложения рассмотренной нами теории. Покажем как полученные выше формулы применяются при решении реальных задач по расчету эффективности некоторых финансовых операций, сравним различные методы расчетов.

Конвертация валюты и начисление процентов

Рассмотрим совмещение конвертации (обмена) валюты и наращение простых процентов , сравним результаты от непосредственного размещения имеющихся денежных средств в депозиты или после предварительного обмена на другую валюту. Всего возможно 4 варианта наращения процентов:

1. Без конвертации. Валютные средства размещаются в качестве валютного депозита, наращение первоначальной суммы производится по валютной ставке путем прямого применения формулы простых процентов.

2. С конвертацией. Исходные валютные средства конвертируются в рубли, наращение идет по рублевой ставке, в конце операции рублевая сумма конвертируется обратно в исходную валюту.

3. Без конвертации. Рублевая сумма размещается в виде рублевого депозита, на который начисляются проценты по рублевой ставке по формуле простых процентов.

4. С конвертацией. Рублевая сумма конвертируется в какую-либо конкретную валюту, которая инвестируется в валютный депозит. Проценты начисляются по валютной ставке. Наращенная сумма в конце операции обратно конвертируется в рубли.

Операции без конвертации не представляют сложности. В операции наращения с двойной конвертацией имеются два источника дохода: начисление процента и изменение курса. Причем начисление процента является безусловным источником (ставка фиксирована, инфляцию пока не рассматриваем). Изменение же обменного курса может быть как в ту, так и в другую сторону, и оно может быть как источником дополнительного дохода, так и приводить к потерям. Далее мы конкретно остановимся на двух вариантах (2 и 4), предусматривающих двойную конвертацию.

Предварительно введем следующие ОБОЗНАЧЕНИЯ:

P v - сумма депозита в валюте,

P r - сумма депозита в рублях,

S v - наращенная сумма в валюте,

S r - наращенная сумма в рублях,

K 0 - курс обмена в начале операции (курс валюты в руб.)

K 1 - курс обмена в конце операции,

n - срок депозита,

i - ставка наращения для рублевых сумм (в виде десятичной дроби),

j - ставка наращения для конкретной валюты.

ВАРИАНТ:ВАЛЮТА ® РУБЛИ ® РУБЛИ ® ВАЛЮТА

Операция состоит из трех этапов: обмена валюты на рубли, наращения рублевой суммы, обратное конвертирование рублевой суммы в исходную валюту. Наращенная сумма, получаемая в конце операции в валюте, составит

.

Как видим, три этапа операции нашли свое отражение в этой формуле в виде трех сомножителей.

Множитель наращения с учетом двойной конвертации равен

,

где k = K 1 / K 0 - темп роста обменного курса за срок операции.

Мы видим, что множитель наращения m связан линейной зависимостью со ставкой i и обратной с обменным курсом в конце операции K 1 (или с темпом роста обменного курса k ).

Исследуем теоретически зависимость общей доходности операции с двойной конвертацией по схеме ВАЛЮТА ® РУБЛИ ® РУБЛИ ® ВАЛЮТА от соотношения конечного и начального курсов обмена k .

Простая годовая ставка процентов, характеризующая доходность операции в целом, равна

.

Подставим в эту формулу записанное ранее выражение для S v

.

Таким образом с увеличением k доходность i эфф падает по гиперболе с асимптотой -1/ n . См. рис. 2.

Рис. 2.

Исследуем особые точки этой кривой. Отметим, что при k =1 доходность операции равна рублевой ставке, т.е. i эфф = i . При k >1 i эфф < i , а при k <1 i эфф > i . На рис. 1 видно, при некотором критическом значении k , которое мы обозначим как k * , доходность (эффективность) операции оказывается равной нулю. Из равенства i эфф =0 находим, что k * =1+ ni , что в свою очередь означает K * 1 = K 0 (1+ ni ).

ВЫВОД 1: Если ожидаемые величины k или K 1 превышают свои критические значения, то операция явно убыточна (i эфф <0 ).

Теперь определим максимально допустимое значение курса обмена в конце операции K 1 , при котором эффективность будет равна существующей ставке по депозитам в валюте, и применение двойной конвертации не дает никакой дополнительной выгоды. Для этого приравняем множители наращения для двух альтернативных операций

.

Из записанного равенства следует, что

или

.

ВЫВОД 2: Депозит валюты через конвертацию в рубли выгоднее валютного депозита, если обменный курс в конце операции ожидается меньше max K 1 .

ВАРИАНТ:РУБЛИ ® ВАЛЮТА ® ВАЛЮТА ® РУБЛИ

Рассмотрим теперь вариант с двойной конвертацией, когда имеется исходная сумма в рублях. В этом случае трем этапам операции соответствуют три сомножителя следующего выражения для наращенной суммы

.

Здесь также множитель наращения линейно зависит от ставки, но теперь от валютной ставки процентов. От конечного курса обмена он также зависит линейно.

Проведем теоретический анализ эффективности этой операции с двойной конвертацией и определим критические точки.

.

Отсюда, подставив выражение для S r , получаем

.

Зависимость показателя эффективности i эфф от k линейная, она представлена на рис. 3

Рис . 3.

При k=1 i эфф =j , при k>1 i эфф >j , при k<1 i эфф .

Найдем теперь критическое значение k * , при котором i эфф =0 . Оно оказывается равным

или .

ВЫВОД 3: Если ожидаемые величины k или K 1 меньше своих критических значений, то операция явно убыточна (i эфф <0 ).

Минимально допустимая величина k (темпа роста валютного курса за весь срок операции), обеспечивающая такую же доходность, что и прямой вклад в рублях, определяется путем приравнивания множителей наращения для альтернативных операций (или из равенства i эфф = i )

,

откуда min или min .

ВЫВОД 4: Депозит рублевых сумм через конвертацию в валюту выгоднее рублевого депозита, если обменный курс в конце операции ожидается больше min K 1 .

Теперь рассмотрим совмещение конвертации валюты и наращение сложных процентов. Ограничимся одним вариантом.

ВАРИАНТ:ВАЛЮТА ® РУБЛИ ® РУБЛИ ® ВАЛЮТА

Три этапа операции записываются в одной формуле для наращенной суммы

,

где i - ставка сложных процентов.

Множитель наращения

,

где - темп роста валютного курса за период операции.

Определим доходность операции в целом в виде годовой ставки сложных процентов i э .

Из формулы наращения по сложным процентам

S=P(1+i) n

следует, что

.

Подставив в эту формулу значение S v , получим

.

Из этого выражения видно, что с увеличением темпа роста k эффективность i э падает. Это показано на графике рис. 4.

Рис. 4.

Анализ показывает, что при k =1 i э = i , при k >1 i э < i , а при k <1 i э > i .

Критическое значение k , при котором эффективность операции равна нулю, т.е. i э =0 ,

определяется как k * =(1+ i ) n , что означает равенство среднегодового темпа роста курса валюты годовому темпу наращения по рублевой ставке: .

ВЫВОД 5: Если ожидаемые величины k или K 1 больше своих критических значений, то рассматриваемая операция с двойной конвертацией явно убыточна (i э <0 ).

Максимально допустимое значение k , при котором доходность операции будет равна доходности при прямом инвестировании валютных средств по ставке j (т. a на рис. 4), находится из равенства соответствующих множителей наращения

,

откуда

или max .

ВЫВОД 6: Депозит валюты через конвертацию в рубли выгоднее валютного депозита, если обменный курс в конце операции ожидается меньше max K 1 .

Погашение задолженности частями

Контур финансовой операции

Финансовая или кредитная операции предполагают сбалансированность вложений и отдачи. Понятие сбалансированности можно пояснить на графике.



Рис. 5.

Пусть ссуда в размере D 0 выдана на срок T . На протяжении этого срока в счет погашения задолженности производятся, допустим, два промежуточных платежа R 1 и R 2 , а в конце срока выплачивается остаток задолженности R 3 , подводящий баланс операции.

На интервале времени t 1 задолженность возрастает до величины D 1 . В момент t 1 долг уменьшается до величины K 1 = D 1 - R 1 и т.д. Заканчивается операция получением кредитором остатка задолженности R 3 . В этот момент задолженность полностью погашается.

Назовем график типа б) контуром финансовой операции . Сбалансированная операция обязательно имеет замкнутый контур, т.е. последняя выплата полностью покрывает остаток задолженности. Контур операции обычно применяется при погашении задолженности частичными промежуточными платежами.

С помощью последовательных частичных платежей иногда погашаются краткосрочные обязательства. В этом случае существуют два метода расчета процентов и определения остатка задолженности. Первый называется актуарным и применяется в основном в операциях со сроком более года . Второй метод назван правилом торговца . Он обычно применяется коммерческими фирмами в сделках со сроком не более года .

Замечание: При начислении процентов, как правило, используются обыкновенные проценты с приближенным числом дней временных периодов.

Актуарный метод

Актуарный метод предполагает последовательное начисление процентов на фактические суммы долга. Частичный платеж идет в первую очередь на погашение процентов, начисленных на дату платежа. Если величина платежа превышает сумму начисленных процентов, то разница идет на погашение основной суммы долга. Непогашенный остаток долга служит базой для начисления процентов за следующий период и т.д. Если же частичный платеж меньше начисленных процентов, то никакие зачеты в сумме долга не делаются. Такое поступление приплюсовывается к следующему платежу.

Для случая, показанного на рис. 5 б), получим следующие расчетные формулы для определения остатка задолженности:

K 1 =D 0 (1+t 1 i)-R 1 ; K 2 =K 1 (1+t 2 i)-R 2 ; K 2 (1+t 3 i)-R 3 =0,

где периоды времени t 1 , t 2 , t 3 - заданы в годах, а процентная ставка i - годовая.


Правило торговца

Правило торговца является другим подходом к расчету частичных платежей. Здесь возможны две ситуации.

1) Если срок ссуды не превышает, сумма долга с начисленными за весь срок процентами остается неизменной до полного погашения. Одновременно идет накопление частичных платежей с начисленными на них до конца срока процентами.

2) В случае, когда срок превышает год, указанные выше расчеты, делаются для годового периодазадолженности. В конце года из суммы задолженности вычитается наращенная сумма накопленных частичных платежей. Остаток погашается в следующем году.

При общем сроке ссуды T £ 1 алгоритм можно записать следующим образом

,

где S - остаток долга на конец срока,

D - наращенная сумма долга,

K - наращенная сумма платежей,

R j - сумма частичного платежа,

t j - интервал времени от момента платежа до конца срока,

m - число частичных (промежуточных) платежей.

Переменная сумма счета и расчет процентов

Рассмотрим ситуацию, когда в банке открыт сберегатель­ный счет, и сумма счета в течение срока хранения изменяется: денежные средства снимаются, делаются дополнительные взносы. Тогда в банковской практике при расчете процентов часто используют методику расчета с вычислением так называемых процентных чисел . Каждый раз, когда сумма на счете изменяется, вычисляется процентное число C j за прошедший период j , в течение которого сумма на счете оставалась неизменной, по формуле

,

где t j - длительность j -го периода в днях.

Для определения суммы процентов, начисленной за весь срок, все процентные числа складываются и их сумма делится на постоянный делитель D :

,

где K - временная база (число дней в году, т.е. 360 либо 365 или 366), i - годовая ставка простых процентов (в %).

При закрытии счета владелец получит сумму равную последнему значению суммы на счете плюс сумму процентов.

Пример 14.

Пусть 20 февраля был открыт счет до востребования в размере P 1 =3000 руб., процентная ставка по вкладу равнялась i =20% годовых. Дополнительный взнос на счет составил R 1 =2000 руб. и был сделан 15 августа. Снятие со счета в размере R 2 =-4000 руб. зафиксировано 1 октября, а 21 ноября счет был закрыт. Требуется определить сумму процентов и общую сумму, полученную вкладчиком при закрытии счета.

Решение.

Расчет будем вести по схеме (360/360). Здесь имеются три периода, в течение которых сумма на счете оставалась неизменной: с 20 февраля по 15 августа (P 1 =3000, t 1 =10+5*30+15=175), с 15 августа по 1 октября (P 2 = P 1 + R 1 =3000+2000=5000 руб., t 2 =15+30+1=46), с 1 октября по 21 ноября (P 3 = P 2 + R 2 =5000-4000=1000 руб., t 3 =29+21=50).

Найдем процентные числа

,

,

.

Постоянный делитель

D=K/i=360/20 =18.

Сумма процентов равна

Сумма, выплачиваемая при закрытии счета, равна

P 3 +I=1000+447.22=1447 руб . 22 коп .

Теперь покажем связь этой методики с формулой простых процентов. Рассмотрим в алгебраическом виде представленный выше пример.

C умму, выплачиваемую при закрытии счета, найдем следующим образом

Таким образом, мы получили выражение, из которого следует, что на каждую сумму, добавляемую или снимаемую со счета, начисляются проценты с момента совершения соответствующей операции до закрытия счета. Эта схема соответствует правилу торговца, рассмотренному в разделе 6.2.

Изменение условий контракта

В практике часто возникает необходимость в изменении условий контракта: например, должник может попросить об отсрочке срока погашения долга или, напротив, изъявить желание погасить его досрочно, в ряде случаев может возникнуть потребность объединить (консолидировать) несколько долговых обязательств в одно и т.д. Во всех этих случаях применяется принцип финансовой эквивалентности старых (заменяемых) и новых (заменяющих) обязательств. Для решения задач по изменению условий контракта разрабатывается так называемое уравнение эквивалентности , в котором сумма заменяемых платежей, приведенных к какому-либо одному моменту времени, приравнивается сумме платежей по новому обязательству, приведенных к той же дате. Для краткосрочных контрактов применяются простые процентные ставки, а для средне- и долгосрочных - сложные ставки.

Сложные проценты

2.2.1. Формула сложых процентов

2.2.2. Эффективная ставка процентов

2.2.3. Переменная ставка процентов

2.2.4. Непрерывное начисление процентов

2.2.5. Определение срока ссуды и величины процентной ставки

В финансовой практике значительная часть расчетов ведется с использованием схемы сложных процентов.

Применение схемы сложных процентов целесообразно в тех случаях, когда:

  • проценты не выплачиваются по мере их начисления, а присоединяются к первоначальной сумме долга. Присоединение начисленных процентов к сумме долга, которая служит базой для их начисления, называется капитализацией процентов;
  • срок ссуды более года.

Если процентные деньги не выплачиваются сразу по мере их начисления, а присоединяются к первоначальной сумме долга, то долг, таким образом, увеличивается на невыплаченную сумму процентов, и последующее начисление процентов происходит на увеличенную сумму долга:

FV = PV + I = PV + PV • i = PV • (1 + i )

– за один период начисления;

FV = (PV + I ) • (1 + i ) = PV • (1 + i ) • (1 + i ) = PV • (1 + i ) 2

– за два периода начисления;

отсюда, за n периодов начисления формула примет вид:

FV = PV • (1 + i ) n = PV • k н ,

где FV – наращенная сумма долга;

PV – первоначальная сумма долга;

i – ставка процентов в периоде начисления;

n – количество периодов начисления;

k н – коэффициент (множитель) наращения сложных процентов.

Эта формула называется формулой сложных процентов.

Как было выше указано, различие начисления простых и сложных процентов в базе их начисления. Если простые проценты начисляются все время на одну и ту же первоначальную сумму долга, т.е. база начисления является постоянной величиной, то сложные проценты начисляются на увеличивающуюся с каждым периодом начисления базу. Таким образом, простые проценты по своей сути являются абсолютными приростами, а формула простых процентов аналогична формуле определения уровня развития изучаемого явления с постоянными абсолютными приростами. Сложные проценты характеризуют процесс роста первоначальной суммы со стабильными темпами роста, при наращении ее по абсолютной величине с ускорением, следовательно, формулу сложных процентов можно рассматривать как определение уровня на базе стабильных темпов роста.

Согласно общей теории статистики, для получения базисного темпа роста необходимо перемножить цепные темпы роста. Поскольку ставка процента за период является цепным темпом прироста, то цепной темп роста равен:

(1 + i ).

Тогда базисный темп роста за весь период, исходя из постоянного темпа прироста, имеет вид:

(1 + i ) n .

Базисные темпы роста или коэффициенты (множители) наращения, зависящие от процентной ставки и числа периодов наращения, табулированы и представлены в Приложении 2. Экономический смысл множителя наращения состоит в том, что он показывает, чему будет равна одна денежная единица (один рубль, один доллар и т.п.) через n периодов при заданной процентной ставке i . 5>>>

Графическая иллюстрация соотношения наращенной суммы по простым и сложным процентам представлена на рисунке 4.

. База для начисления сложных процентов в отличие от простых не остается постоянной – она увеличивается с каждым шагом во времени. Абсолютная сумма начисляемых процентов возрастает, и процесс увеличения суммы долга происходит с ускорением. Наращение по сложным процентам можно представить как последовательное реинвестирование средств, вложенных под простые про центы на один период начисления ( running period ). Присоедине ние начисленных процентов к сумме, которая послужила базой для их начисления, часто называют капитализацией процентов.

Найдем формулу для расчета наращенной суммы при условии, что проценты начисляются и капитализируются один раз в году (годовые проценты). Для этого применяется сложная став ка наращения. Для записи формулы наращения применим те же обозначения, что и в формуле наращения по простым про центам:

P - первоначальный размер долга (ссуды, кредита, капита ла и т.д.),

S - наращенная сумма на конец срока ссуды,

п - срок, число лет наращения,

i - уровень годовой ставки процентов, представленный де сятичной дробью.

Очевидно, что в конце первого года проценты равны величине Р i , а наращенная сумма составит. К конц у второго года она достигнет величины В конце n -го года наращенная сумма будет равна

(4.1)

Процентыза этот же срокв целом таковы:

(4.2)

Часть из них поучена за счет начисления процентов на проценты. Она составляет

(4.3)

Как показано выше, рост по сложным процентам представ ляет собой процесс, соответствующий геометрической прогрессии, первый член которой равен Р , а знаменатель – . Последний член прогрессии равен наращенной сумме в конце срока ссуды.

Величину называют множителем наращения по сложным процентам. Значения этого множителя для целых чисел п приводятся в таблицах сложных процентов. Точность расчета множителя в практических расчетах определяется допустимой степенью округления наращенной суммы (до последней копейки, рубля и т.д.).

Время при наращении по сложной ставке обычно измеряет ся как АСТ/ A СТ.

Как видим, величина множителя наращения зависит от двух параметров - i и п. Следует отметить, что при большом сроке наращения даже небольшое изменение ставки заметно влияет на величину множителя. В свою очередь очень большой срок приводит к устрашающим результатам даже при небольшой процентной ставке.

Формула наращения по сложным процентам получена для годовой процентной ставки и срока, измеряемого в годах. Однако ее можно применять и при других периодах начисле ния. В этих случаях i означает ставку за один период начисления (месяц, квартал и т.д.), а n – число таких периодов. На пример, если i –ставка за полугодие, то п число полугодий и т.д.

Формулы (4.1) - (4.3) предполагают, что проценты на про центы начисляются по той же ставке, что и при начислении на основную сумму долга. Усложним условия начислений процен тов. Пусть проценты на основной долг начисляются по ставке i а проценты на проценты – по ставке В этом случае

Ряд в квадратных скобках представляет собой геометриче скую прогрессию с первым членом, равным 1, и знаменателем. В итоге имеем

(4.4)

· Пример 4.1

2. Начисление процентов в смежных календарных периодах. Вы ше при начислении процентов не принималось во внимание расположение срока начисления процентов относительно календарных периодов. Вместе с тем, часто даты начала и окончания ссуды находятся в двух периодах. Ясно, что начисленные за весь срок проценты не могут быть отнесены только к послед нему периоду. В бухгалтерском учете, при налогообложении, наконец, в анализе финансовой деятельности предприятия воз никает задача распределения начисленных процентов по периодам.

Общий срок ссуды делится на два периода n 1 и n 2 . Соответственно ,

где

· Пример 4.2

3. Переменные ставки. Формула предполагает постоянную ставку на протяжении всего срока начисления процентов. Неустойчивость кредитно-денежного рынка заставляет модернизировать “классическую” схему, например, с помощью применения плавающих ставок ( floating rate ). Естественно, что расчет на перспективу по таким ставкам весьма условен. Иное дело - расчет постфактум. В этом случае, а также тогда, когда измене ния размеров ставок фиксируются в контракте, общий множитель наращения определяется как произведение частных, т.е.

(4.5)

где - последовательные значения ставок; - периоды, в течение которых “работают” соответствующие ставки.

· Пример 4.3

4. Начисление процентов при дробном числе лет. Часто срок в го дах для начисления процентов не является целым числом. В правилах ряда коммерческих банков для некоторых операций проценты начисляются только за целое число лет или других периодов начисления. Дробная часть периода отбрасывается. В большинстве же случаев учитывается полный срок. При этом применяют два метода. Согласно первому, назовем его общим, расчет ведется по формуле:

(4.6)

Второй, сме шанный, метод предполагает начисление процентов за целое число лет по формуле сложных процентов и за дробную часть срока по формуле простых процентов:

,(4.7)

где – срок ссуды, а - целое число лет, b - дробная часть года.

Аналогичный метод применяется и в случаях, когда перио дом начисления является полугодие, квартал или месяц.

При выборе метода расчета следует иметь в виду, что мно житель наращения по смешанному методу оказывается несколько больше, чем по общему, так как для п < 1 справедли во соотношение

Наибольшая разница наблю дается при b = 1/2.

НАЧИСЛЕНИЕ СЛОЖНЫХ ПРОЦЕНТОВ

Раздел II. Начисление сложных процентов

2.1 Сложные проценты

Сложные проценты применяются в долгосрочных финансово-кредитных операциях, если проценты не выплачиваются периодически сразу после их начисления за прошедший интервал времени, а присоединяются к сумме долга. Присоединение начисленных процентов к сумме, которая служила базой для их определения, часто называютка-

питализацией процентов.

Формула наращения по сложным процентам

Пусть первоначальная сумма долга равна P , тогда через один год сумма долга с присоединенными процентами составитP(1+i) , через 2 годаP(1+i)(1+i)=P(1+i) 2 , черезn лет -P(1+i) n . Таким образом, получаем формулу наращения для сложных процентов

S=P(1+i)n

где S - наращенная сумма,i - годовая ставка сложных процентов,n - срок ссуды,(1+i) n - множитель наращения.

В практических расчетах в основном применяют дискретные проценты, т.е. проценты, начисляемые за одинаковые интервалы времени (год, полугодие, квартал и т.д.). Наращение по сложным процентам представляет собой рост по закону геометрической прогрессии, первый член которой равен P , а знаменатель(1+i).

Отметим, что при сроке n<1 наращение по простым процентам дает больший результат, чем по сложным, а приn>1 - наоборот. В этом нетрудно убедиться на конкретных числовых примерах. Наибольшее превышение суммы, наращенной по простым процентам, над суммой, наращенной по сложным процентам, (при одинаковых процентных ставках) достигается в средней части периода.

Формула наращения по сложным процентам, когда ставка меняется во времени

В том случае, когда ставка сложных процентов меняется во времени, формула наращения имеет следующий вид

S = P(1 + i) n 1

(1+ i )n 2

...(1+ i )nk ,

где i1 , i2 ,..., ik - последовательные значения ставок процентов, действующих в периоды n1, n2,..., nk соответственно.

В договоре зафиксирована переменная ставка сложных процентов, определяемая как 20% годовых плюс маржа 10% в первые два года, 8% в третий год, 5% в четвертый год. Определить величину множителя наращения за 4 года.

(1+0,3)2 (1+0,28)(1+0,25)=2,704

НАЧИСЛЕНИЕ СЛОЖНЫХ ПРОЦЕНТОВ

Формула удвоения суммы

В целях оценки своих перспектив кредитор или должник может задаться вопросом: через сколько лет сумма ссуды возрастет в N раз при данной процентной ставке. Обычно это требуется при прогнозировании своих инвестиционных возможностей в будущем. Ответ получим, приравняв множитель наращения величинеN :

а) для простых процентов

(1+niпрост. ) = N, откуда

n =

N − 1

пр ост.

б) для сложных процентов

(1+iсложн. )n = N, откуда

Особенно часто используется N =2. Тогда формулы (21) и (22) называются формулами удвоения и принимают следующий вид:

а) для простых процентов

n =

б) для сложных процентов

Если формулу (23) легко применять для прикидочных расчетов, то формула (24) требует применения калькулятора. Однако при небольших ставках процентов (скажем, менее 10%) вместо нее можно использовать более простую приближенную. Ее легко получить, если учесть, что ln 2 0,7, а ln(1+i) i. Тогда

n ≈ 0,7/i .

а) При простых процентах:

n =

10

пр ост.

НАЧИСЛЕНИЕ СЛОЖНЫХ ПРОЦЕНТОВ

б) При сложных процентах и точной формуле:

n =

7,27

I

ln(1+ 01,)

слож н.

в) При сложных процентах и приближенной формуле: n ≈ 0,7/i = 0,7/0,1 =7 лет.

1) Одинаковое значение ставок простых и сложных процентов приводит к совершенно различным результатам.

2) При малых значениях ставки сложных процентов точная и приближенная формулы дают практически одинаковые результаты.

Начисление годовых процентов при дробном числе лет

При дробном числе лет проценты начисляются разными способами: 1) По формуле сложных процентов

S=P(1+i)n ,

На основе смешанного метода, согласно которому за целое число лет начисляются

сложные проценты, а за дробное - простые

S=P(1+i)a (1+bi),

где n=a+b, a -целое число лет, b -дробная часть года.

В ряде коммерческих банков применяется правило, в соответствии с которым за отрез-

ки времени меньше периода начисления проценты не начисляются, т.е.

S=P(1+i)a .

Номинальная и эффективная ставки процентов

Номинальная ставка . Пусть годовая ставка сложных процентов равнаj , а число периодов начисления в годуm . Тогда каждый раз проценты начисляют по ставке j/m. Ставкаj называется номинальной. Начисление процентов по номинальной ставке производится по формуле:

где N/ τ - число (возможно дробное) периодов начисления процентов,τ - период начисления процентов,


НАЧИСЛЕНИЕ СЛОЖНЫХ ПРОЦЕНТОВ

2) По смешанной формуле

S = P(1 +

)a (1+ b

m ,

где a - целое число периодов начисления (т.е.a= - целая часть от деления всего срока ссудыN на период начисленияτ ),

b - оставшаяся дробная часть периода начисления (b=N/ τ -a).

Размер ссуды 20 млн. руб. Предоставлена на 28 месяцев. Номинальная ставка равна 60% годовых. Начисление процентов ежеквартальное. Вычислить наращенную сумму в трех ситуациях: 1) когда на дробную часть начисляются сложные проценты, 2) когда на дробную часть начисляются простые проценты 3) когда дробная часть игнорируется. Результаты сравнить.

Начисление процентов ежеквартальное. Всего имеется 3 = 91 3 кварталов.

S = 20(1+ 06, / 4)9

73,713 млн. руб.

2)

S = 20(1+

)9

(1+

73,875 млн. руб.

3) S=20(1+0,6/4) 9 = 70,358 млн. руб.

Из сопоставления наращенных сумм видим, что наибольшего значения она достигает во втором случае, т.е. при начислении на дробную часть простых процентов.

Эффективная ставка показывает, какая годовая ставка сложных процентов дает тот же финансовый результат, что иm -разовое наращение в год по ставкеj/m.

Если проценты капитализируются m раз в год, каждый раз со ставкойj/m , то, по определению, можно записать равенство для соответствующих множителей наращения:

(1+iэ )n =(1+j/m)mn ,

где i э - эффективная ставка, аj - номинальная. Отсюда получаем, что связь между эффективной и номинальной ставками выражается соотношением

i э =(1 +

−1

Обратная зависимость имеет вид

j=m[(1+iэ )1/m -1].

Вычислить эффективную ставку процента, если банк начисляет проценты ежеквартально, исходя из номинальной ставки 10% годовых.


НАЧИСЛЕНИЕ СЛОЖНЫХ ПРОЦЕНТОВ

Решение i э =(1+0,1/4) 4 -1=0,1038, т.е. 10,38%.

Пример 10.

Определить какой должна быть номинальная ставка при ежеквартальном начислении процентов, чтобы обеспечить эффективную ставку 12% годовых.

Решение. j =4[(1+0,12) 1/4 -1]=0,11495, т.е. 11,495%.

Учет (дисконтирование) по сложной ставке процентов

Здесь, также как и в случае простых процентов, будут рассмотрены два вида учета - математический и банковский.

Математический учет . В этом случае решается задача обратная наращению по сложным процентам. Запишем исходную формулу для наращения

S=P(1+i)n

и решим ее относительно P +

щей стоимостью или приведенной величинойS . Суммы P и S эквивалентны в том смысле, что платеж в сумме S через n лет равноценен сумме P , выплачиваемой в настоящий момент.

Разность D=S-P называютдисконтом .

Банковский учет . В этом случае предполагается использование сложной учетной ставки. Дисконтирование по сложной учетной ставке осуществляется по формуле

P=S(1-dсл )n , (39)

где d сл - сложная годовая учетная ставка.

Дисконт в этом случае равен

D=S-P=S-S(1-dсл )n =S. (40)

НАЧИСЛЕНИЕ СЛОЖНЫХ ПРОЦЕНТОВ

При использовании сложной учетной ставки процесс дисконтирования происходит с прогрессирующим замедлением, так как учетная ставка каждый раз применяется к сумме, уменьшенной за предыдущий период на величину дисконта.

Номинальная и эффективная учетные ставки процентов

Номинальная учетная ставка . В тех случаях, когда дисконтирование применяютm раз в году, используютноминальную учетную ставку f. Тогда в каждом периоде, равном1/m части года, дисконтирование осуществляется по сложной учетной ставкеf/m . Процесс дисконтирования по этой сложной учетнойm раз в году описывается формулой

P=S(1-f/m)N ,

где N - общее число периодов дисконтирования (N=mn ).

Дисконтирование не один, а m раз в году быстрее снижает величину дисконта.

Эффективная учетная ставка . Под эффективной учетной ставкой понимают сложную годовую учетную ставку, эквивалентную (по финансовым результатам) номинальной, применяемой при заданном числе дисконтирований в годуm .

В соответствии с определением эффективной учетной ставки найдем ее связь с номинальной из равенства дисконтных множителей

Отметим, что эффективная учетная ставка всегда меньше номинальной.

Наращение по сложной учетной ставке. Наращение является обратной задачей для учетных ставок. Формулы наращения по сложным учетным ставкам можно получить, разрешая соответствующие формулы для дисконтирования (39 и 41) относительноS . Получаем из P=S(1-d сл ) n

S = P

(1− d сл )n

а из P=S(1-f/m)N

S = P

(1− f /m )N

Пример 11.

Какую сумму следует проставить в векселе, если реально выданная сумма равна 20 млн. руб., срок погашения 2 года. Вексель рассчитывается, исходя из сложной годовой учетной ставки 10%.

S = (1 − 20 0,1) 2 = 24,691358 млн. руб.

Сложным процентом принято называть эффект, когда проценты прибыли прибавляются к основной сумме и в дальнейшем сами участвуют в создании новой прибыли.

Формула сложного процента - это формула, по которой рассчитывается итоговая сумма с учётом капитализации (начислении процентов).

Чтобы лучше усвоить расчет сложных процентов, давайте разберём пример. Представим, что вы положили 10 000 руб. в банк под 10 процентов годовых.

Через год на вашем банковском счету будет лежать сумма SUM = 10000 + 10000*10% = 11 000 руб.

Ваша прибыль - 1000 рублей.

Вы решили оставить 11 000 руб. на второй год в банке под те же 10 процентов.

Через 2 года в банке накопится 11000 + 11000*10% = 12 100 руб.

Прибыль за первый год (1000 рублей) прибавилась к основной сумме (10000р) и на второй год уже сама генерировала новую прибыль. Тогда на 3-й год прибыль за 2-й год прибавится к основной сумме и будет сама генерировать новую прибыль. И так далее.

Этот эффект и получил название сложный процент.

Когда вся прибыль прибавляется к основной сумме и в дальнейшем уже сама производит новую прибыль.

Формула сложных процентов

В финансовой практике значительная часть расчетов ведется с использованием схемы сложных процентов.

Применение схемы сложных процентов целесообразно в тех случаях, когда:

Проценты не выплачиваются по мере их начисления, а присоединяются к первоначальной сумме долга. Присоединение начисленных процентов к сумме долга, которая служит базой для их начисления, называется капитализацией процентов;
- срок ссуды более года.

Если процентные деньги не выплачиваются сразу по мере их начисления, а присоединяются к первоначальной сумме долга, то долг, таким образом, увеличивается на невыплаченную сумму процентов, и последующее начисление процентов происходит на увеличенную сумму долга:

FV = PV + I = PV + PV • i = PV • (1 + i)

– за один период начисления;

FV = (PV + I) • (1 + i) = PV • (1 + i) • (1 + i) = PV • (1 + i)2

– за два периода начисления;

Отсюда, за n периодов начисления формула примет вид:

FV = PV • (1 + i)n = PV • kн,

Где FV – наращенная сумма долга;
PV – первоначальная сумма долга;
i – ставка процентов в периоде начисления;
n – количество периодов начисления;
kн – коэффициент (множитель) наращения сложных процентов.

Эта формула называется формулой сложных процентов.

Как было выше указано, различие начисления простых и сложных процентов в базе их начисления. Если простые проценты начисляются все время на одну и ту же первоначальную сумму долга, т.е. база начисления является постоянной величиной, то сложные проценты начисляются на увеличивающуюся с каждым периодом начисления базу. Таким образом, простые проценты по своей сути являются абсолютными приростами, а формула простых процентов аналогична формуле определения уровня развития изучаемого явления с постоянными абсолютными приростами.

Сложные проценты характеризуют процесс роста первоначальной суммы со стабильными темпами роста, при наращении ее по абсолютной величине с ускорением, следовательно, формулу сложных процентов можно рассматривать как определение уровня на базе стабильных темпов роста.

Согласно общей теории статистики, для получения базисного темпа роста необходимо перемножить цепные темпы роста.

Поскольку ставка процента за период является цепным темпом прироста, то цепной темп роста равен:

Тогда базисный темп роста за весь период, исходя из постоянного темпа прироста, имеет вид:

(1 + i)n

Начисление сложных процентов

Любой человек в современном мире рано или поздно сталкивается со сложным процентом. Как правило, знакомство со сложными процентами происходит в банке при расчете доходности по вкладу. Поскольку знание этого понятия является фундаментальным для любого инвестора, поэтому решил посвятить этой теме целую статью, в которой раз и навсегда разобраться в начислении сложных процентов. Для удобства я буду рассматривать явление сложных процентов на примере банковских вкладов. Надеюсь, что эта статья будет полезна не только новичкам в инвестировании, но и опытным инвесторам для правильного планирования доходности портфеля.

Итак, что же такое сложный процент. Говоря простым языком, это постоянное увеличение инвестиционного капитала за счет прибыли, при этом полученный доход участвует в получении новой прибыли за следующий расчетный период. Магия сложных процентов заключается в ускоренном росте капитала и прибыли, за счет постоянного реинвестирования, в банках еще это называют капитализацией.

Прежде чем понять, как рассчитать сложный процент по вкладу, давайте разберемся с простыми процентами. Простые проценты часто используют при подсчете прибыли по банковскому депозиту, со снятием дохода в расчетные периоды. К примеру, если мы инвестируем 100$ на 10 лет под 10% годовых, то через год мы сможем забрать всего 110$.

А после окончания срока депозита, вклад удвоится:

1-й год: 100$ + 100$*0,10 = 110$
10-й год: 100 + 100$*0,10*10 лет = 200$

Ощутимым преимуществом простых процентов (инвестирования без капитализации), является возможность использование текущей прибыли в других целях.

Теперь на этом же простом примере разберем, как просчитать сложный процент при ежегодной капитализации:

1-й год: 100 + 10% = 110$
2-й год: 110 + 10% = 121$
10-й-год: 236 + 10% = 260$

Как видно из примера, сложный банковский процент существенно интереснее, с применением этого метода прибыль вкладчика на 30% больше, чем при простом проценте. Эта сумма может быть еще большей, если применять не ежегодную капитализацию (начисление процентов), а ежеквартальную или ежемесячную.

Суть процесса начисления сложных процентов с капитализацией в том, что доход приносит не только первоначальная сумма вклада, но и каждое начисление прибыли. При этом сумма увеличивается с большой скоростью, и чем чаще будет фиксироваться прибыль, тем больше будет доход.

C=C0 *(1+P*m/100*12)^n
Где:
C - итог,
C0 - сумма первоначального вклада,
P - процент годовых,
m - период капитализации (месяц),
n - периоды инвестирования.

C=C0 *(1+P*m/100*12)^n + (D *(1+P*m/100*12)^(n+1) - D *(1+P*m/100*12)) / (P*m)/100*12)

Эту же формулу расчета сложных процентов можно использовать и для банковских вкладов.

Функции сложного процента

Расчет исчисления реальной ценности (стоимости) денег основан на временной оценке денежных потоков, которая основана на следующем. Цена приобретения объекта недвижимости определяется, в конечном счете, величиной дохода, который инвестор предполагает получить в будущем. Однако покупка объекта недвижимости и получение доходов происходят в разные отрезки времени. Поэтому простое сопоставление величины затрат и доходов в той сумме, в которой они будут отражены в финансовой отчетности, невозможно (например, 10 млн. рублей готового дохода, полученные через 3 года, будут меньше этой суммы в настоящее время). Однако на стоимость денег оказывают влияние не только информационные процессы, но и основное условие инвестирования - вложенные деньги должны приносить доход.

Приведение денежных сумм, возникающих в разное время, к сопоставимому виду называется временной оценкой денежных потоков. В этих расчетов положен сложный процент, который означает, что вся основная сумма, находящаяся на депозите, должна приносить процент, включая процент, оставшийся на счете с предыдущих периодов.

Теория и практика использования функций сложного процента базируется на ряде допущений:

1. Денежный поток, в котором суммы различаются по величине, называют денежным потоком;
2. Денежный поток, в котором все суммы равновелики, называют аннуитетом;
3. Суммы денежного потока возникают через одинаковые промежутки времени, называемые периодом;
4. Доход, получаемый на инвестированный капитал, из хозяйственного оборота не изымается, а присоединяется к основному капиталу;
5. Суммы денежного потока возникают в конце периода (в иных случаях требуется соответствующая корректировка).

Рассмотрим подробнее шесть функций сложного процента:

1. Накопленная сумма единицы. Данная функция позволяет определить будущую стоимость имеющейся денежной суммы исходя их предполагаемой ставки периодичности дохода, срока накопления и начисления процентов. Накопленная сумма единицы - базовая функция сложного процента, позволяющая определить будущую стоимость при заданном периоде, процентной ставке и известной сумме в будущем:

FV = PV * (1 + i)n

Пример задачи: Получен кредит 150 млн. руб. сроком на 2 года, под 15% годовых; начисление % происходит ежеквартально. Определить наращенную сумму, подлежащую возврату.

2. Текущая стоимость единицы (фактор реверсии). Текущая стоимость единицы (реверсии) дает возможность определить настоящую (текущую, приведенную) стоимость суммы, величина которой известна в будущем при заданном периоде процентной ставки. Это процесс, полностью обратный начислению сложного процента:

PV = FV / (1 + i)n

Показывает текущую стоимость денежной суммы, которая должна быть единовременно получена в будущем.

Пример задачи: Какова текущая стоимость 1 000 долларов, полученных в конце пятого года при 10% годовых при годовом начислении процента?

3. Накопление единицы за период (будущая стоимость аннуитета). Показывает, какой по истечении всего срока будет стоимость серии равных сумм, депонированных в конце каждого из периодических интервалов, т.е. будущая стоимость аннуитета. (Аннуитет - это денежный поток, в котором все суммы равновелики и возникают через одинаковые промежутки времени):

FVA = (1 + i)n – 1 i PMT

Пример задачи: Определить будущую стоимость регулярных ежемесячных платежей величиной по 12000$ в течение 4 лет при ставке 11,5% и ежемесячном накоплении.

4. Текущая стоимость обычного аннуитета. Показывает текущую стоимость равномерного потока доходов, например, доходов, получаемых от сдаваемой в аренду собственности. Первое поступление происходит в конце первого периода; последующие - в конце каждого последующего периода:

PVA = PMT * 1 - (1 + i)-n i

Пример задачи: Определить величину кредита, если известно, что в его погашение ежегодно выплачивается по 30000 $ в течение 8 лет при ставке 15%.

5. Фактор фонда возмещения. Показывает сумму равновеликого периодического взноса, который вместе с процентом необходим для того, чтобы к концу определенного периода накопить сумму, равную:

FVA. SFF = FVA * i (1 + i)n - 1

Пример задачи: Определить сумму, ежемесячно вносимую в банк под 15% годовых для покупки дома стоимостью 65000000$ через 7 лет.

6. Взнос на амортизацию единицы. Показывает равновеликий периодический платеж, необходимый для полной амортизации кредита, т.е. позволяет определить размер платежа, необходимого для возврата кредита, включая процент и выплату основной суммы долга:

PMT = PVA * i 1 - (1 + i)-n

Сложные проценты по кредиту

Особенно важно не попасть в ситуацию, когда процент по кредиту оказывается гораздо выше, чем вы себе представляли.

Это может произойти, если вы не учитываете сложный процент. Рост задолженности становится проблемой, если вы не гасите такой кредит быстро.

Процент, начисленный на увеличенную сумму, растет в соответствии с законами математики. Так же, как и в случае с вкладами, конечная сумма увеличивается с каждым сроком, за который начисляется процент, неравномерно.

Как правило, процент за пользование кредитом берется каждый месяц.

Рано или поздно большинство людей обращаются в банк с желанием взять кредит. Их мотивы вполне понятны – намного проще взять деньги в банке под проценты, чем просить в долг необходимую сумму у знакомых и друзей. В человеческой жизни порой случаются такие моменты, к которым невозможно подготовится заранее, когда отложенных денег просто банально не хватает. После прочтения страшных историй в прессе, когда банк за просрочки и долги по кредитам отнимает у людей жилье или транспорт, практически каждый человек, решивший взять средства в кредит, старается очень основательно подготовиться к походу в банк. Можно попробовать самому рассчитать проценты по выбранному кредиту, а также определить размер переплаты по нему.

Почти все банки, на сегодняшний день, выдают кредиты, по условиям которых регулярные ежемесячные платежи не меняются. Такие платежи называются аннуитетными. Любой кредитный платеж, как правило, состоит из суммы оплаты основного долга и процентов, начисленных на нее. В некоторых случаях сюда входит еще и дополнительная ежемесячная комиссия банка. В сумме первых выплат размер процентов выше, а в течении срока оплаты кредита он постепенно уменьшается. Соответственно, размер выплат основного долга увеличивается.

Как правило, все кредитные договора составляются с учетом простых или сложных процентов. Под понятием простых процентов по кредиту имеется в виду, они будут определяться на основе первоначальной суммы займа, вне зависимости от длительности кредитного договора и количества платежей.

Сложные проценты по кредиту, это способ расчета процентов, при использовании которого они начисляются на первоначальную сумму долга по кредиту, а также на прирост долга по кредиту, который начислен уже после первого начисления процентов. То есть, основа для начисления таких процентов будет постепенно увеличиваться, в зависимости от каждого периода начисления. Если говорить более простым языком, то расчет сложных процентов по кредиту можно описать как начисление процентов на процент.

При использовании такой схемы выплаты кредита, процентный платеж в каждом следующем месяце добавляется к сумме общего займа, а следующий начисляется уже исходя из этой, увеличенной суммы первоначального займа.

Формула сложных процентов по кредиту выглядит примерно так:

Б = С (1+ К)Т

В данной формуле Б – это конечная сумма, которую заемщик обязуется выплатить банку по окончанию срока действия кредитного договора. С – первоначальная сумма займа, которую заемщик берет в кредит у банка. К это ставка процентов по выбранному кредиту, установленная банком, а Т – это общая продолжительность периода, на который был взят кредит, в годах.

Кроме этих двух основных методов расчета, существует также еще один, по которому рассчитываются так называемые смешанные проценты.

Наращение сложных процентов

Для оценки движения финансовых потоков во времени применяют различные формулы финансовой математики, в том числе и расчет сложных процентов. Сущность расчета заключается в том, что проценты, начисленные за период, по инвестированным средствам, в следующем периоде присоединятся к основной сумме, в результате чего в следующем периоде проценты будут начислены и на основную сумму, и на добавленные проценты. При этом происходит капитализация процентов по мере их начисления и база, с которой начисляются проценты, постоянно возрастает.

Сложная процентная ставка наращения – это ставка, при которой база начисления является переменной, то есть проценты начисляются на проценты.

Для пояснения разницы между простыми и сложными процентами рассмотрим ситуацию: клиент положил в банк на несколько лет сумму, равную P, под простые проценты по ставке i, причем счет можно закрыть в любое время. Если клиент закроет счет через 2 года, то на руки он получит сумму S1 = P(1 + 2i).

Но клиент может поступить таким образом: через год закрыть счет, получить на руки сумму S = P(1 + i), а затем положить эту сумму еще раз на год, осуществив операцию реинвестирования.

Такое действие позволит ему в конце второго года получить:

S2 = P(1 + i) = P(1 + i)(1 +i) = P(1 + i)2.

Величина S2 > S1 ,ясно, что клиенту выгодно каждый раз переоформлять счет, поэтому с целью предотвращения такого рода действий банки в некоторых случаях используют сложные проценты.

В схеме сложных процентов очередной годовой доход исчисляется не с исходной, а с общей суммы, включающей начисленные проценты. Происходит капитализация процентов, т. е. база, с которой они начисляются, все время возрастает.

Размер возвращаемой суммы рассчитывается по формулам:

• через 1 год: S1 = S + Pi = P(1 + i);
• через 2 года: S2 = S1 + S1i = S1 (1 + i) = P(1 + i)2;
. . .
• через n лет:
Sn = P (1 + i)n
- формула наращения сложных процентов
S – наращенная сумма
I - годовая ставка сложных процентов
n- срок ссуды
(1+i) – множитель наращения

Формулу наращения для сложных процентов используют в том случае, когда срок для начисления процентов является дробным числом.

Величина начисленных процентов составит:

I = S - P = P [(1+i)n - (1+ni)].

Пример: Какой величины достигнет долг, равный 1 млн. руб., через 5 лет при росте по сложной ставке 15,5% годовых?

S = P(l + i)n =1000000-(1 + 0,155)5 =2055464,22 руб.

Для того чтобы сопоставить результаты наращения по разным процентным ставкам, достаточно сравнить соответствующие множители наращения.

Нетрудно убедиться в том, что при одинаковых уровнях процентных ставок соотношения этих множителей существенно зависят от срока.

В самом деле, при условии, что временная база для начисления процентов одна и та же, находим следующие соотношения (в приведенных ниже формулах подписной индекс s проставлен у ставки простых процентов):

Для срока меньше года простые проценты больше сложных:
(1 + nis) > (1 + i)n
- для срока больше года сложные проценты больше простых:
(1 + nis) - для срока равного году множители наращения равны друг другу.

Сложные проценты капитализация

Для понимания сложных процентов необходимы базовые знания банковской математики. Есть капитал или основная сумма (англ. principal), обозначаемая как буква латинского алфавита P. Есть также такие немаловажные параметры как частота начисления процентов, процентная ставка (англ. interest rate, r), период ставки (по умолчанию имеется ввиду ежегодное начисление) и период вложения t.

При простом начислении процентов, в конце каждого периода начисляется процент, согласно процентной ставке, на ваш капитал, т.е. тело. Независимо от периода вложения, хоть год, хоть 100 лет, в конце каждого периода простые проценты начисляются на тело, т.е. на изначальный вложенный капитал.

При сложном начислении процентов, начисленные проценты, по окончании периода, присоединяются к капиталу. Это присоединение начисленных процентов к капиталу играет важнейшую роль во всем процессе начисления сложных процентов, т.к. в последующем периоде, новые проценты будут начисляться уже на новую, увеличенную сумму. Таким образом, общая сумма вклада растет со скоростью экспоненты (т.е. все быстрее и быстрее), а не по модели скучной арифметической прогрессии.

Сложные проценты (англ. compound interest) именуется по-разному в разных кругах и сферах деятельности.

Мы используем термин «сложные проценты», но можно также встретить следующие названия сложных процентов:

Проценты на проценты
- эффективные проценты
- композиционный процент
- норма доходности с учетом реинвестирования
- норма доходности с учетом капитализации

Становится ясно, что процесс, который происходит для начисления сложных процентов называется реинвестирование или капитализация.

Метод сложных процентов

Метод сложного процента – это метод определения будущей стоимости инвестиций. В отличие от простого процента, который в течение всего периода кредитования применяется к одной и той же (основной) сумме, сложный процент начисляется и на основную сумму, и на сумму процентов за каждый предыдущий год, и так в течение всего периода кредитования.

Пример:

1. Простой процент по ссуде в размере 100,0 тыс. руб. выданной на срок 3 года под 10% годовых:

100,0 х 10% х 3 = 30,0 тыс. руб. за три года,

Т. е. ежегодно дебитор обязан уплачивать по 10,0 тыс. руб. процентных платежей, а всего платеж по кредиту за три года составит 130,0 тыс. руб.

2. Сложный процент при выдаче такой же ссуды на тех же условиях обязывает дебитора к процентным платежам в таких суммах:

За I год: 100,0 х 0,1 = 10,0 тыс. руб.
За II год: (100,0 + 10,0) х 0,1 = 11,0 тыс. руб.
За III год: (100,0 + 10,0 + 11,0) х 0,1 = 12,1 тыс. руб.
Итого процентных платежей: 33,1 тыс. руб.
Всего платеж по кредиту составит 133,1 тыс. руб.

Кратко данный расчет сложного процента можно записать так:

100,0 х 1,1х3 = 133,1 тыс. руб.

Так, методом сложного процента, рассчитывается будущая стоимость денежных средств, инвестированных сейчас.