Что такое ресурсы в пище. Рациональное использование природных ресурсов. Пищевые ресурсы Земли

Что такое ресурсы в пище. Рациональное использование природных ресурсов. Пищевые ресурсы Земли

Уксусный альдегид относится к органическим соединениям и входит в класс альдегидов. Какими свойствами обладает это вещество, и как выглядит формула уксусного альдегида?

Общая характеристика

Уксусный альдегид имеет несколько названий: ацетальдегид, этаналь, метилформальдегид. Это соединение является альдегидом уксусной кислоты и этанола. Его структурная формула выглядит следующим образом: CH 3 -CHO.

Рис. 1. Химическая формула уксусного альдегида.

Особенностью этого альдегида является то, что он встречается как в природе, так и производится искусственным путем. В промышленности объем производства этого вещества может составлять до 1 миллиона тонн в год.

Этаналь встречается в пищевых продуктах, таких как кофе, хлеб, а также это вещество синтезируют растения в процессе метаболизма.

Уксусный альдегид представляет собой жидкость без цвета, но отличающуюся резким запахом. Растворим в воде, спирте и эфире. Является ядовитым.

Рис. 2. Уксусный альдегид.

Жидкость закипает при достаточно низкой температуре – 20,2 градуса по Цельсию. Из-за этого возникают проблемы с ее хранением и транспортировкой. Поэтому хранят вещество в виде паральдегида, а ацетальдегид из него получают в случае необходимости путем нагревания с серной кислотой (либо с любой другой минеральной кислотой). Паральдегид – это циклический тример уксусной кислоты.

Способы получения

Получить уксусный альдегид можно несколькими способами. Самый распространенный вариант – окисление этилена или, как еще называют этот способ, процесс Вакера:

2CH 2 =CH 2 +O 2 —2CH 3 CHO

Окислителем в данной реакции выступает хлорид палладия.

Также уксусный альдегид можно получить пр взаимодействии ацетилена с солями ртути. Данная реакция носит имя русского ученого и называется реакцией Кучерова. В результате химического процесса образуется енол, который изомеризуется в альдегид

C 2 H 2 +H 2 O=CH 3 CHO

Рис. 3. М. Г. Кучеров портрет.

До открытия метода Вакера в 60-ые годы уксусный альдегид получали при помощи этилового спирта. Этиловый спирт окисляли или дегидрировали. В качестве катализатора выступали медь или серебро:

C 2 H 5 OH–CH 3 COH+H 2

2C 2 H 5 OH+O 2 =2CH 3 OH+2H 2 O

По химическим свойствам ацетальдегид является типичным представителем альдегидов.

Применяют в промышленности данное вещество для получения уксусной кислоты, бутадиена и различных органических веществ.

Химические свойства ацетальдегида

1. Гидрирование. Присоединение водорода к происходит в присутствии катализаторов гидрирования (Ni, Со, Си, Pt, Pd и др.). При этом он переходит в этиловый спирт:

CH3CHO + H2C2H5OH

При восстановлении альдегидов или кетонов водородом в момент выделения (с помощью щелочных металлов или амальгамированного магния) образуются наряду с соответствующими спиртами в незначительных количествах образуются также гликоли:

2 CH3CHO + 2НCH3 - CH - CH - CH3

2. Реакции нуклеофильного присоединения

2.1 Присоединение магнийгалогеналкилов

СН3 - СН2 - MgBr + CH3CHO BrMg - O - CH - C2H5

2.2 Присоединение синильной кислоты приводит к образованию нитрила б-гидроксипропионовой кислоты:

CH3CHO + HCN CH3 - CH - CN

2.3 Присоединение гидросульфита натрия дает кристаллические вещество - производное ацетальдегида:

CH3CHO + HSO3NaCH3 - C - SO3Na

2.4 Взаимодействие с аммиаком приводит к образованию ацетальдимина :

CH3CHO + NH3CH3-CH=NH

2.5 С гидроксиламином ацетальдегид, выделяя воду, образует ацетальдоксимоксим:

CH3CHO + H2NOH H2O + CH3-CH =NOH

2.6 Особый интерес представляют реакции ацетальдегида с гидразином и его замещенными :

CH3CHO + H2N - NH2 + OCHCH3 CH3-CH=N-N=CH-CH3 + 2H2O

Альдазин

2.7 Ацетальдегид способен присоединять по карбонильной группе воду с образованием гидрата - геминального гликоля. При 20?С ацетальдегид в водном растворе на 58% существует в виде гидрата -C- + HOH HO-C-OH

2.8 При действии на ацетальдегид спиртов образуются полуацетали:

CH3CHO + HOR CH3-CH

В присутствии следов минеральной кислоты образуются ацетали

CH3 - CH + ROH CH3 - CH + H2O

2.9 Ацетальдегид при взаимодействии с РС15 обменивает атом кислорода на два атома хлора, что используется для получения геминального дихлорэтана:

CH3CHO + РС15 CH3CHСl2 + POCl3

3. Реакции окисления

Ацетальдегид окисляются кислородом воздуха до уксусной кислоты. Промежуточным продуктом являются надуксусная кислота:

CH3CHO + O2 CH3CO-OOH

CH3CO-OOH + CH3CHOCH3-C-O-O-CH-CH3

Аммиачный раствор гидроксида серебра при легком нагревании с альдегидами окисляет их в кислоты с образованием свободного металлического серебра. Если пробирка, в которой идет реакция, была предварительно обезжирена изнутри, то серебро ложится тонким слоем на ее внутренней поверхности - образуется серебряное зеркало :

CH3 CHO + 2OHCH3COONH4 + 3NH3 + H2O + 2Ag

4. Реакции полимеризации

При действии на ацетальдегид кислот происходит его тримеризация, образуется паральдегид:

3CH3CHO СH3 - CH CH - CH3

5. Галогенирование

Ацетальдегид реагирует с бромом и иодом с одинаковой скоростью независимо от концентрации галогена. Реакции ускоряются как кислотами, так и основаниями.

CH3CHO + Br2 CH2BrCHO + HBr

При нагревании с трис(трифенилфосфин)родийхлоридом претерпевают декарбонилирование с образованием метана:

CH3CHO + [(C6H5)P]3RhClCH4 + [(C6H5)3P]3RhCOCl

7. Конденсация

7.1 Альдольная конденсация

В слабоосновной среде (в присутствии ацетата, карбоната или сульфита калия) ацетальдегид подвергаются альдольной конденсации по А. П. Бородину с образованием альдегидоспирта (3-гидроксибутаналя), сокращенно называемого альдолем. Альдоль образуется в результате присоединения альдегида к карбонильной группе другой молекулы альдегида с разрывом связи С -- Н в б-положеиии к карбонилу:

CH3CHO + CH3CHO CH3-CHOH-CH2-CHO

Альдоль при нагревании (без водоотнимающих веществ) отщепляет воду с образованием непредельного кротонового альдегида (2-бутеналя) :

CH3-CHOH-CH2-CHO CH3-CН=CH-CHO + Н2О

Поэтому переход от предельного альдегида к непредельному через альдоль называется кротоновой конденсацией. Дегидратация происходит благодаря очень большой подвижности водородных атомов в б-положении по отношению к карбонильной группе (сверхсопряжение), причем разрывается, как и во многих других случаях, р-связь по отношению к карбонильной группе.

7.2 Сложноэфирная конденсация

Проходит с образованием уксусноэтилового эфира при действии на ацетальдегид алкоголятов алюминия в неводной среде (по В. Е. Тищенко):

2CH3CHOCH3-CH2-O-C-CH3

7.3 Конденсация Клайзена-- Шмидта.

Эта ценная синтетическая реакция состоит в катализируемой основаниями конденсации ароматического или иного альдегида, не имеющего водородных атомов, с алифатическим альдегидом или кетоном. Например, коричный альдегид может быть получен встряхиванием смеси бензальдегида и ацетальдегида примерно с 10 частями разбавленной щелочи и выдерживанием смеси в течение 8--10 суток. В этих условиях обратимые реакции приводят к двум альдолям, но один из них, в котором 3-гидроксил активирован фенильной группой, необратимо теряет воду, превращаясь в коричный альдегид:

C6H5--CHO + CH3CHO C6H5-CHOH-CH2-CHO C6H5-CH=CH-CHO

Химические свойства кислорода

Кислород обладает высокой химической активностью, особенно при нагревании и в присутствии катализатора. С большинством простых веществ он взаимодействует непосредственно, образуя оксиды. Лишь по отношению к фтору кислород проявляет восстановительные свойства.

Подобно фтору кислород образует соединения почти со всеми элементами (кроме гелия, неона и аргона). С галогенами, криптоном, ксеноном, золотом и платиновыми металлами он непосредственно не реагирует, и их соединения получают косвенным путем. Со всеми остальными элементами кислород соединяется непосредственно. Эти процессы обычно сопровождаются выделением теплоты.

Поскольку по электроотрицательности кислород уступает только фтору, степень окисления кислорода в подавляющем большинстве соединений принимается равной -2. Кроме того, кислороду приписывают степени окисления +2 и + 4, а также +1(F2O2) и -1(Н2О2) .

Наиболее активно окисляются щелочные и щелочноземельные металлы, причем в зависимости от условий образуются оксиды и пероксиды:

О2 + 2Са = 2СаО

О2 + Ва = ВаО2

Некоторые металлы в обычных условиях окисляются лишь с поверхности (например, хром или алюминий). Образующаяся пленка оксида препятствует дальнейшему взаимодействию. Повышение температуры и уменьшение размеров частиц металла всегда ускоряют окисление. Так, железо в нормальных условиях окисляется медленно. При температуре же красного каления (400 °С) железная проволока горит в кислороде:

3Fe + 2О2 = Fe3 O4

Тонкодисперсный железный порошок (пирофорное железо) самовоспламеняется на воздухе уже при обычной температуре.

С водородом кислород образует воду:

При нагревании сера, углерод и фосфор горят в кислороде. Взаимодействие кислорода с азотом начинается лишь при 1200 °С или в электрическом разряде:

Водородные соединения горят в кислороде, например:

2H2S + ЗО2 = 2SO2 + 2Н2О (при избытке О2)

2Н2S + О2 = 2S + 2Н2О (при недостатке О2)

Введение

На сегодняшний день известны миллионы химических соединений. И большинство из них относится к органическим. Эти вещества делят на несколько больших групп, название одной из них - альдегиды. Сегодня мы рассмотрим представителя этого класса - уксусный альдегид.

Определение

Уксусный альдегид является органическим соединением класса альдегидов. Его могут называть и по-другому: ацетальдегидом, этаналем или метилформальдегидом. Формула уксусного альдегида - CH 3 -CHO.

Свойства

Рассматриваемое вещество имеет вид бесцветной жидкости с резким удушливым запахом, которая хорошо растворима водой, эфиром и спиртом. Так как температура кипения обсуждаемого соединения низкая (около 20 о С), хранить и перевозить можно только его тример - паральдегид. Уксусный альдегид получают, нагрев упомянутое вещество с неорганической кислотой. Это - типичный алифатичетский аьдегид, и он может принимать участие во всех реакциях, которые характерны для данной группы соединений. Вещество имеет свойство таутомеризироваться. Этот процесс завершается образованием енола - винилового спирта. Из-за того что уксусный альдегид доступен как безводный мономер, его применяют в качестве электрофила. Вступать в реакции может как он, так и его соли. Последние, например при взаимодействии с реактивом Гриньяра и литий-органическими соединеними, образуют производные гидроксэтила. Уксусный альдегид при конденсации отличается своей хиральностью. Так, при реакции Штрекера он может конденсироваться с аммиаком и цианидами, а продуктом гидролиза станет аминокислота аланин. Еще уксусный альдегид вступает в такого же вида реакцию с другими соединениями - аминами, тогда продуктом взаимодействия становятся имины. В синтезе гетероциклических соединений уксусный альдегид является очень важным компонентом, основой всех проводящихся опытов. Паральдегид - циклический тример этого вещества - получается при конденсации трех молекул этаналя. Также уксусный альдегид может образовывать стабильные ацетали. Это происходит во время взаимодействия рассматриваемого химического вещества с этиловым спиртом, проходящего в безводных условиях.

Получение

В основном уксусный альдегид получают с помощью окисления этилена (процесс Вакера). В роли окислителя выступает хлорид палладия. Еще данное вещество можно получить во время гидратации ацетилена, в которой присутствуют соли ртути. Продуктом реакции является енол, который изомеризуется в искомое вещество. Еще один способ получения уксусного альдегида, который был наиболее популярным задолго до того, как стал известен процесс Вакера, - окисление или дегидратация этанола в присутствии медного или серебряного катализаторов. При дегидратации, помимо искомого вещества, образуется водород, а во время окисления - вода.

Применение

С помощью обсуждаемого соединения получают бутадиен, альдегидные полимеры и некоторые органические вещества, в том числе и одноименную кислоту. Она образуется при его окислении. Реакция выглядит так: "кислород + уксусный альдегид = уксусная кислота". Этаналь - важный прекурсор ко многим производным, и это свойство широко применяется в синтезе
многих веществ. В организмах человека, животных и растений ацетальдегид является участником некоторых сложных реакций. Также он входит в состав сигаретного дыма.

Заключение

Ацетальдегид может приносить как пользу, так и вред. Он плохо воздействует на кожу, является ирритантом и, возможно, канцерогеном. Поэтому его присутствие в организме нежелательно. Но некоторые люди сами провоцируют появление ацетальдегида, куря сигареты и употребляя алкоголь. Подумайте над этим!

Дата публикации 27.01.2013 17:10

Уксусный альдегид (другие названия: ацетальдегид, метилформальдегид, этаналь) - это органическое соединение, принадлежащее к классу альдегидов. Это вещество имеет важное значение для человека, оно встречается в кофе, хлебе, спелых фруктах и овощах. Синтезируется растениями. Встречается в природе и производится в больших количествах человеком. Формула уксусного альдегида: CH3-CHO.

Физические свойства уксусного альдегида

1. Уксусный альдегид – это жидкость без цвета, имеющая резкий неприятный запах.

2. Хорошо растворяется в эфире, спирте и воде.

3. Молярная масса составляет 44,05 грамм/моль.

4. Плотность равна 0,7 грамм/сантиметр³.

Термические свойства уксусного альдегида

1. Температура плавления равна -123 градусам.

2. Температура кипения составляет 20 градусов.

3. Температура воспламенения равна -39 градусам.

4. Температура самовоспламенения составляет 185 градусов.

Получение уксусного альдегида

1. Основной способ получения этого вещества заключается в окислении этилена (так называемый процесс Вакера). Так выглядит эта реакция:

2CH2 = C2H4 (этилен) + O2 (кислород) = 2CH3CHO (метилформальдегид)

2. Также уксусный альдегид можно получить посредством гидратации ацетилена в присутствии ртутных солей (так называемая реакция Кучерова). При этом получается фенол, который затем изомеризуется в альдегид.

3. Следующий метод был популярным до появления вышеописанного процесса. Выполнялся путем окисления или дегидрирования этилового спирта на серебряном или медном катализаторе.

Применение уксусного альдегида

Для получения каких веществ нужен уксусный альдегид? Уксусная кислота, бутадиен, альдегидные полимеры и некоторые другие органические вещества.

Используется в качестве прекурсора (вещество, которое участвует в реакции, приводящей к созданию целевого вещества) к уксусной кислоте. Однако так применять рассматриваемое нами вещество вскоре перестали. Это произошло по той причине, что уксусную кислоту проще и дешевле производить из металона при помощи процессов Катива и Монсанто.

Метилформальдегид – важный прекурсор к пентаэритролу, пиридиновым производным и кротоналдегиду.

Получение смол в результате того, что мочевина и уксусный альдегид имеют способность конденсироваться.

Получение этилидендиацетата, из которого в дальнейшем производят мономер поливинилацетат (винилацетат).

Табачная зависимость и уксусный альдегид

Данное вещество – это значительная часть табачного дыма. Недавно была проведена демонстрация, на которой было показано, что синергическая связь уксусной кислоты с никотином увеличивает проявление зависимости (особенно у лиц до тридцати лет).

Болезнь Альцгеймера и уксусный альдегид

Те люди, у которых нет генетического фактора конверсии метилформальдегида в уксусную кислоту, имеют высокий риск предрасположенности к такому заболеванию, как сенильная деменция (или болезнь Альцгеймера), которая обычно возникает в старческом возрасте.

Алкоголь и метилформальдегид

Предположительно рассматриваемое нами вещество является канцерогеном для человека, так как на сегодняшний день существуют доказательства канцерогенности уксусного альдегида в различных экспериментах на животных. Кроме этого, метилформальдегид повреждает ДНК, вызывая тем самым несоразмерное с массой тела развитие мышечной системы, которое связано с нарушением обмена белка в организме. Было проведено исследование 800 алкоголиков, в результате которого ученые пришли к выводу, что у людей, подвергшихся воздействию уксусного альдегида, есть дефект в гене одного фермента – алкогольдегидрогеназы. По этой причине такие пациенты больше подвержены риску развития онкологического заболевания почек и верхней части печени.

ММК НИЯУ МИФИ

Практическая работа №4
По теме: Пищевые ресурсы человечества.

Выполнил: Осипова Елена
Группа: Э-201

Г. Москва, 12.11.2012г.
Содержание

Введение
1 Пищевые ресурсы суши
2 Пищевые ресурсы моря
Заключение

Введение
Пищевые ресурсы – основа жизни для человека. Человек успешно умеет создавать и увеличивать для себя запасы пищи. История человечества – поиск все новых и новых пищевых ресурсов. Сотни тысяч лет первобытные люди собирали доступную им пищу, охотились на доступную добычу. Примерно так добывают себе пропитания всеядные животные, например, медведи. Но, в отличие от них, люди научились добывать пищу, воссоздавать пищевые ресурсы, пользуясь простейшими орудиями. Так 10 тысяч лет назад на Ближнем Востоке возникло сельское хозяйство. Жители тех мест научились выращивать съедобные растения, содержать полезных для себя животных.
Производство пищи принципиальное экологическое отличие человека от всех биологических видов, главное проявление его социальных особенностей. Уже несколько тысячелетий люди совершенствуют производство продовольствия, увеличивая его количество и улучшая качество. В результате возрастает выживаемость, растет численность человечества. Возможности увеличения пищевых ресурсов не беспредельны. Даже сейчас при высоком уровне производство продовольствия отдельных странах почти 10% мирового населения страдают от голода (особенно в Африке) и столько же от неполноценной пищи (например, при нехватке животного белка).
Нехватка пищевых ресурсов всегда была и остается важным фактором, влияющим на выживание населения в любых странах и регионах. Непрерывный рост пищевых ресурсов существенно снижает смертность и тем самым способствует росту численности населения Земли.
В данной контрольной работе будет подробно рассмотрена проблема пищевых ресурсов, как необходимого компонента в жизнедеятельности человечества.

Глава 1 Пищевые ресурсы суши

На Земном шаре существует более 80 тысяч съедобных растений. Но человек использует в пищу только 30 культур. Четыре из них – пшеница, рис, кукуруза и картофель дают нам больше продовольствий, чем остальные культуры вместе взятые. К другим основным продуктам относятся рыба, мясо, молоко, яйца, сыры. К другим не менее ценным пищевым ресурсам относятся животные, играющие прямую косвенную роль в жизни человека. Прямое положительное значение имеет виды животных, дающие мясо, шерсть, кожу, пух, перо и т.п. Косвенное значение таких животных заключается в том, что они могут способствовать увеличению продуктивности растительных пищевых ресурсов. Например, без насекомых опылителей не могли бы существовать очень многие представители масличных, зерновых, бахчевых, садовых, ягодных растений.
Обеспечение продовольствием имеет большое значение в удовлетворении населения земли продовольственными продуктами высокого качества, обеспечивающими питание, сбалансированное по калорийности и диетологическим нормам. Наблюдающееся в последнее время увеличение прироста населения позволяет считать вполне достоверным увеличение численности населения планеты к 2010 г. до 8,1 млр. человек. Следовательно, планомерное наращивание производства продуктов питания становится неотложной задачей. (Ресурсы и воспроизводство/ под ред. С.А. Боголюбова. М., 2003. С. 12.)
Первоочередной задачей считается улучшение продовольственного снабжения населения. Необходимо более чем удвоить темпы роста сельскохозяйственного производства, обеспечить значительную прибавку мяса, молока, овощей и плодов. Предстоит поднять эффективность использования производственного потенциала в агропромышленном комплексе, сконцентрировав силы на важнейших участках, обеспечивающих их наибольшую отдачу, в первую очередь на повышении плодородия земли и внедрении интенсивных технологий. Крупным источником пополнения продовольственного фонда является сокращение потерь сельскохозяйственной продукции при транспортировке, хранении и переработке, которые могут составлять от 20 до 30% исходной продукции. В аграрном секторе предстоит перейти на экономические факторы хозяйствования.(Там же. С. 14.)
Особое место принадлежит увеличению производства зерна для пищевых и фуражных целей. Его следует увеличить, по крайней мере, в полтора раза, чтобы обеспечить по крайней мере внутренние потребности каждой страны. Почвенно-климатические условия планеты и осуществляемые мероприятия по интенсификации земледелия позволяют считать выполнение этой задачи вполне реальным.
По пути интенсификации земледелия идут многие государства, в особенности страны СЭВ. За 1999- 2003 гг. валовая продукция сельского хозяйства Болгарии увеличилась на 21%, а средняя урожайность зерновых достигла 40 ц/га. Высокими темпами развивается сельское хозяйство Венгрии, Германии. По производству зерна, мяса, фруктов на душу населения США занимает ведущее место в мире.
Эти страны достигли высокого уровня самообеспечения продовольствием, поставляя часть продуктов питания на экспорт, в том числе в промышленно развитые и развивающиеся страны (Европа, Ближний и Средний Восток).
Одновременно решается вторая часть проблемы: обеспечить сбалансированность рациона питания по отдельным компонентам. В рационе питания постепенно возрастает доля мяса и мясопродуктов, овощей и фруктов при некотором снижении доли хлеба и картофеля. Так, за двадцать лет (1980-2000 гг.) количество потребляемого в год на душу населения хлеба сократилось: в Болгарии на 30 кг, СНГ - на 25, Великобритании на -19, США - на 18, Германии - на 6 кг, хотя еще не полностью решена задача снабжения населения крупами, а в некоторых странах и мясом.(Там же. С. 15.)
Европейские страны - отличаются высоким душевым потреблением мясомолочной продукции, рыбы и рыбопродуктов, сахара и овощей при постоянном снижении доли картофеля. Из приведенных данных следует, что за истекшие двадцать лет (1980-2000 гг.) существенно изменилась структура потребления населением продуктов питания в восточно-европейских странах: увеличилось потребление таких ценных продуктов питания, как мясо, молоко, рыба, яйцо, сахар, овощи, заметно снизилось потребление картофеля. Долговременные программы этих стран направлены не на увеличение поголовья скота, а на повышение его продуктивности как основного источника получения полноценного белка.
Европейские страны быстро наращивают темпы роста сельскохозяйственной продукции. В 1999 г. в СНГ валовая продукция сельского хозяйства превысила уровень 1995 г. на 5,6% Болгарии - на 6,8, Кубы - на 5,3, КНР - на 9,9%. (Разумихин Н.В. Природные ресурсы и их охрана. М., 1997. С. 57.)
Продовольственное положение в современном мире в начале ХХI века отличается большой сложностью. Если европейские страны планомерно наращивали производство продовольствия, достигнув серьезных успехов, то в восточном мире продовольственный кризис, связанный, прежде всего с нехваткой продовольствия в развивающихся странах, углублялся социальным расслоением сельского населения и концентрацией земельных угодий в руках средних и крупных землевладельцев.
Несмотря на некоторое увеличение поставок сельскохозяйственной техники в развивающиеся страны, разрыв в обеспеченности современными орудиями труда между развитыми странами и развивающимися чрезвычайно велик: на долю первых в 1993 г. приходилось 86% действующих тракторов и 94% уборочных машин. В результате по насыщенности сельскохозяйственной техникой каждых 100 га обрабатываемой земли, развивающиеся страны в 1983 г. уступали промышленно развитым странам в 12 раз.
В особенно тяжелом положении оказывается ряд развивающихся стран Африки и Юго-Восточной Азии, где в течение двух последних десятилетий производство продуктов питания растет очень медленно, отставая от темпов роста населения. Сельское хозяйство развивающихся стран, в условиях дефицита сельскохозяйственной техники и удобрений, очень сильно зависит от погоды. Годы 1990 и 1994 были урожайными для стран Юго-Восточной Азии, в результате чего по данным ФАО валовое производство сельскохозяйственной продукции здесь увеличилось по сравнению с 1986 г. на 6,5%, в том числе в Индии на 10,2%, Пакистане - на 8,6, Южной Корее - на 8,4%. Однако кризисная ситуация сложилась на Африканском континенте вследствие ряда катастрофических засух 1995-1996 гг., особенно сильных в странах, расположенных в районе Сахеля.
Обеспечение продовольствием населения развивающихся стран составляет одну из наиболее острых проблем современного мира, обусловленных рядом социально- экономических причин, в том числе низким уровнем развития производительных сил, неравноправной торговлей с развитыми странами, деятельностью транснациональных корпораций н другими факторами. Уровень питания более 400 млн. человек населения развивающихся стран ниже критического: питание не отвечает нормальным физиологическим потребностям организма при минимальной активности человека. Фактическое количество голодающих оценивается величиной в 2 раза большей. Темпы роста продовольствия (в среднем 0,2% в год) не соответствуют темпам роста населения (в среднем 2,5% в год), что отодвигает проблему ликвидации голода в развивающихся странах на многие десятилетия. Развитые страны в 7 раз превосходят развивающиеся страны по приросту продовольствия па душу населения. Это объясняется не только быстрыми темпами роста населения в развивающихся странах. Причина здесь гораздо глубже, она заключается в том, что наращивание производства продовольствия в этих странах невозможно без крупных социально- экономических преобразований.(Оуэн О.С. Охрана природных ресурсов. М., 1991. С. 112.)
Можно отметить, что в целом в начале 90-х годов по обеспеченности на душу населения основными продуктами питания промышленно развитые страны мира опережали развивающиеся страны соответственно по зерновым в 3,1 раза, по мясной продукции - в 6,8. Показательно, что с течением времени разрыв между государствами в обеспечении основными продуктами питания не сокращается, а увеличивается.
Интенсификация земледелия в современном мире идет по нескольким направлениям. К главному из них следует отнести разработку новых методов агротехники и внедрение для них противоэрозионной системы почвообрабатывающих орудий. К. наиболее перспективной в будущем относится так называемая «обработка почвы по заказу» (с учетом конкретных почвенно-климатических условий, биологических особенностей растений и методов их возделывания).
Одним из способов интенсификации современного земледелия является применение химических удобрении и средств защиты растений. Однако процесс их внедрения проходит в разных странах дифференцированно. Земледелие Нидерландов, Ирландии, Японии основано на высоких дозах внесения минеральных удобрений (азот, фосфор, калий) -до 500-800 кг, тогда как в США, Швеции, Канаде наметилась тенденция к снижению использования высоких доз минеральных удобрений для повышения урожаев. Накопленный опыт показывает, что массированное применение удобрений может подавить деятельность почвенных бактерий и привести к потере части урожая.(Гаев А.Я. Наши следы в природе. М., 1991. С. 99.)
В развитых странах производство продуктов питания наращивалось в условиях активного спроса на мировом рынке, чему способствовало внедрение новой агротехники и других приемов интенсивного земледелия. В целом за десятилетие (1984-1994 гг.) в этой группе стран урожайность зерновых культур возросла на 11,6%. Особенно значительный рост урожайности зерновых культур (на 19%) был отмечен в европейских странах, где в 1998 г. был собран рекордный урожай зерновых.
Аграрный протекционизм в США и политика нормирования фермерского производства в странах Европейского экономического сообщества не отвечают решению продовольственной проблемы в мире. Парадоксом продовольственного положения в мире является накопление больших запасов продовольствия в развитых странах, особенно в США. Одновременно возросла нехватка продовольствия в развивающихся странах. В США при избытке продовольствия более 35 млн. американцев недоедают, а финансовая задолженность Фермеров США оценивалась на конец 1994 г. в 200 млрд. дол. Внедрение в сельское хозяйство тяжелых энергонасыщенных тракторов не снизило себестоимости сельскохозяйственной продукции.
В целом, в мире основной тенденцией развития современного животноводства за последние годы являлся рост его продуктивности и производства основных видов продукции при некотором сокращении поголовья крупного рогатого скота. Интенсификация производства позволила развитым странам, располагающим примерно 30% поголовья крупного рогатого скота, производить почти 2/3 животноводческой продукции (мясо, молоко). Быстро росло и производство молочной продукции, в особенности в странах Западной Европы и в Японии. (Ресурсы и воспроизводство/ под ред. С.А. Боголюбова. М., 2003. С. 20.)
Возможности интенсивного земледелия и животноводства для решения продовольственной проблемы весьма велики, а пищевые ресурсы планеты в состоянии обеспечить растущее население Земли в настоящем и будущем. Однако решение продовольственной проблемы и рационального использования пищевых ресурсов остается по- прежнему актуальным.

Глава 2 Пищевые ресурсы моря

Главное богатство Мирового океана – это его пищевые ресурсы (рыба, зоо - и фитопланктон). Океан всегда кормил людей, с незапамятных времен человек ловил рыбу и ракообразных, собирал водоросли, моллюсков. О том, как вели промысел рыбаки в древности, рассказывают нам наскальные изображения, рисунки, литературные источники. Теперь с развитием всевозможных технических приспособлений, добыча пищевых морских ресурсов набирает обороты. Так, в холодных водах Северной Атлантики ведется непрерывный лов сельди, одной из самых питательных рыб. Треска – второй по важности объект промышленного рыболовства в северной Европе. Южнее – наиболее важное значение имеют рыбы: макрель (родственная тунцу), морской язык и камбала. Это только несколько рыб из того множества морских животных, который ловит человек.
Биомасса океана насчитывает 150 тысяч видов животных и 10 тысяч водорослей, а ее общий объем оценивается в 35 миллиардов тонн, чего вполне может хватить, чтобы прокормить 30 миллиардов человек. Вылавливая ежегодно 85-90 миллионов тонн рыбы, на нее приходится 85% от используемой морской продукции, моллюсков, водорослей, человечество обеспечивает около 20% своих потребностей в белках животного происхождения. Живой мир океана – это огромные пищевые ресурсы, которые могут быть неистощимыми при правильном и бережном его использовании.(Оуэн О.С. Охрана природных ресурсов. М., 1991. С. 200.)
Нерациональное ведение промысла и, в частности, перелов рыбы, т.е. вылов большего количества ее, чем воспроизводится. Кроме лова промышленного, здесь важную роль играет браконьерство, т. е. отлов рыбы способами, в местах и сроки, запрещенные правилами рыболовства.
Особенно опасно отравление, загрязнение, изменение кислородного и кормового режима океана как следствие спуска в них промышленных и бытовых загрязненных сточных вод, бонификации и т. п. Подвержены этому, если не считать радиоактивной загрязненности, преимущественно все моря.
Гидротехническое строительство, недостаточно учитывает интересы рыбного хозяйства. Оно вызывает изменение режима стока рек, половодий и паводков, распределения биогенных веществ, солености и уровня внутренних морей, преграждает путь к местам нереста проходным рыбам и нередко уничтожает самые нерестилища.
Первый фактор - пример прямого, непосредственного воздействия деятельности человека на численность рыб, два другие - пример косвенного воздействия, так как вследствие хозяйственной деятельности изменяются условия среды обитания рыб, что может изменить их численность в большей даже степени, чем отлов.
Любого из трех названных факторов достаточно, чтобы нарушить рыбный промысел, а в ряде случаев они действуют одновременно.
Два первых фактора приводят к уменьшению или полному прекращению добычи рыбы, а третий может быть и весьма положительным с точки зрения рыбного хозяйства.(Шилов И.А. Экология. М., 1998. С. 132.)
Максимальный вылов рыбы не должен превышать 150-180 миллионов тонн в год. Превзойти этот предел очень опасно, т.к. произойдут неисполнимые потери. Многие сорта рыб, китов, ластоногих вследствие неумеренной охоты почти исчезли из океанских вод, и неизвестно, восстановиться когда-нибудь их поголовья. Но население Земли растет бурными темпами, все больше нуждается в морской продукции. Существует несколько путей поднятия ее продуктивности. Первый – изымать из океана не только рыбу, но и зоопланктон, часть которого – антарктический криль – уже пошла в пищу. Можно без всякого ущерба для океана вылавливать его в гораздо больших количествах, чем вся добываемая в настоящее время рыба. Второй путь – использование пищевых ресурсов открытого океана. Биологическая продуктивность океана особенно велика в области подъема глубинных вод. Один из таких апвелингов, расположенный у побережья Перу, дает 15% мировой добычи рыбы, хотя площадь его составляет не более двухсотых % от всей поверхности Мирового Океана. Наконец, третий путь – культурное разведение живых организмов, в основном в прибрежных зонах. Все эти три способа успешно опробованы во многих странах мира, но локально, поэтому продолжается губительный по своим объемам вылов рыбы. (Гаев А.Я. Наши следы в природе. М., 1991. С. 154)
Огромные возможности для увеличения пищевых ресурсов открывает развитие марикультуры - искусственного разведения морских рыб, моллюсков, ракообразных и иглокожих. Многие виды морских организмов имеют значение не только как продукты питания. Их органы и ткани содержат ценные биологически активные вещества, необходимые
и т.д.................