Не удается ввести пин код телефон перезагружается. Как разблокировать телефон, если вы забыли пароль, пин-код или графический ключ. Разблокировка СИМ-карты телефона

Не удается ввести пин код телефон перезагружается. Как разблокировать телефон, если вы забыли пароль, пин-код или графический ключ. Разблокировка СИМ-карты телефона

Является наиболее прогрессивной, но и дорогой по стоимости технологией. Зато с ее помощью можно достичь таких результатов, которые не под силу другим способам обработки металла. Способности лазерных лучей придавать любому материалу нужную форму поистине безграничны.

Уникальные возможности лазера основываются на характеристиках:

  • Четкая направленность – за счет идеальной направленности лазерного луча энергия фокусируется в точке воздействия с минимумом потерь,
  • Монохроматичность – у лазерного луча длина волн фиксирована, а частот - постоянна. Это позволяет сфокусировать его обычными линзами,
  • Когерентность – у лазерных лучей высокий уровень когерентности, поэтому их резонансные колебания усиливают энергию на несколько порядков,
  • Мощность – вышеперечисленные свойства лазерных лучей обеспечивают фокусировку энергии высочайшей плотности на минимальной площади материала. Это позволяет разрушать или прожигать любой материал на микроскопически малом участке.

Устройство и принципы работы

Любое лазерное устройство состоит из следующих узлов:

  • источника энергии;
  • рабочего органа, продуцирующего энергию;
  • оптоусилителя, оптоволоконного лазера, системы зеркал, усиливающих излучение рабочего органа.

Лазерным лучом точечно создается нагрев и плавление материала, а после продолжительного воздействия - его испарение. В результате шов выходит с неровным краем, испаряющийся материал осаждается на оптике, что сокращается срок ее эксплуатации.

Для получения ровных тонких швов и удаления паров используют технику выдувания инертными газами или сжатым воздухом продуктов расплава из зоны воздействия лазера.

Заводские модели лазеров, оборудованные высококлассными материалами, могут обеспечить хороший показатель углублений. Но для бытового использования у них слишком высокая цена.

Модели, изготовленные в домашних условиях, способны врезаться в металл на глубину 1-3 см. Этого хватит, чтобы изготовить, например, детали для декорирования ворот или заборов.

В зависимости от используемой технологии резаки бывают 3-х видов:

  • Твердотельные. Компактны и удобны в использовании. Активный элемент – кристалл полупроводника. У моделей с малой мощностью вполне доступная цена.
  • Волоконные. В качестве элемента излучения и накачки используется стекловолокно. Достоинствами волоконных лазерных резаков являются высокий КПД (до 40%), длительный срок эксплуатации и компактность. Так как при работе выделяется мало тепла, нет нужды в установке системы охлаждения. Можно изготавливать модульные конструкции, позволяющие объединять мощности нескольких головок. Излучение транслируется по гибкому оптоволокну. Производительность таких моделей выше твердотельных, но их стоимость дороже.
  • . Это недорогие, но мощные излучатели, основанные на использовании химических свойств газа (азота, углекислого газа, гелия). С их помощью можно варить и резать стекло, резину, полимеры и металлы с очень высоким уровнем теплопроводности.

Самодельный бытовой лазер

Для выполнения ремонтных работ и изготовления металлических изделий в быту часто требуется лазерная резка металла своими руками. Поэтому домашние умельцы освоили изготовление и успешно пользуются ручными лазерными устройствами.

По стоимости изготовления для бытовых нужд больше подходит твердотельный лазер.

Мощность самодельного прибора, конечно же, нельзя даже сравнивать с производственными аппаратами, но для использования в бытовых целях он вполне подойдет.

Как собрать лазер, используя недорогие запчасти и ненужные предметы.

Для изготовления простейшего прибора понадобятся:

  • лазерная указка;
  • фонарик на аккумуляторных батареях;
  • пишущий CD/DVD-RW (подойдет старый и неисправный);
  • паяльник, отвертки.

Как сделать ручной лазерный гравер

Процесс изготовления лазерного резака

  1. Из компьютерного дисковода нужно извлечь красный диод, который прожигает диск при записи. Обратите внимание, что дисковод должен быть именно пишущим.

После демонтажа верхних крепежей, извлекают каретку с лазером. Для этого аккуратно снимают разъемы и шурупы.

Для извлечения диода необходимо распаять крепления диода и извлечь его. Делать это нужно предельно аккуратно. Диод очень чувствительный и его легко повредить, уронив или резко встряхнув.

  1. Из лазерной указки извлекают содержащийся в ней диод, и вместо него вставляют красный диод из дисковода. Корпус указки разбирают на две половинки. Старый диод вытряхивают, подковырнув острием ножа. Вместо него помещают красный диод и закрепляют клеем.
  2. В качестве корпуса лазерного резака проще и удобнее использовать фонарик. В него вставляется верхний фрагмент указки с новым диодом. Стекло фонарика, являющееся для направленного лазерного луча преградой, и части указки надо удалить.

На этапе подключения диода к питанию от аккумуляторных батарей важно четко соблюсти полярность.

  1. На последнем этапе проверяют, насколько надежно зафиксированы все элементы лазера, правильно подключены провода, соблюдена полярность и ровно установлен лазер.

Лазерный резак готов. Из-за малой мощности использовать в работе с металлом его нельзя. Но если необходим прибор, режущий бумагу, пластик, полиэтилен и другие подобные материалы, то этот резак вполне подойдет.

Как усилить мощность лазера для резки металла

Изготовить более мощный лазер для резки металла своими руками можно, оснастив его драйвером, собранным из нескольких деталей. Посредством платы резаку обеспечивается нужная мощность.

Понадобятся следующие детали и приборы:

  1. пишущий CD/DVD-RW (подойдет старый или неисправный), со скоростью записи больше 16х;
  2. аккумуляторы по 3,6 вольт – 3 шт.;
  3. конденсаторы на 100 пФ и на 100 мФ;
  4. сопротивление 2-5 Ом;
  5. коллиматор (вместо лазерной указки);
  6. стальной светодиодный фонарь;
  7. паяльник и провода.

К диоду нельзя подключать источник тока напрямую, иначе он сгорит. Диод берет подпитку от тока, а не от напряжения.

Фокусировка лучей в тонкий луч производится при помощи коллиматора. Он используется вместо лазерной указки.

Продается в магазине электротоваров. В этой детали есть гнездо, куда монтируется лазерный диод.

Сборка лазерного резака такая же, как у описанной выше модели.

Чтобы снять статичность с диода, вокруг него наматывают . С этой же целью можно использовать антистатические браслеты.

Для проверки работы драйвера измеряют мультиметром силу тока, подаваемого на диод. Для этого к прибору подсоединяют нерабочий (или же второй) диод. Для работы большинства самодельных устройств достаточна сила тока 300-350 мА.

Если нужен более мощный лазер, показатель можно увеличить, но не более 500 мА.

В качестве корпуса для самоделки лучше использовать светодиодный фонарик. Он компактный и его удобно использовать. Чтобы не испачкались линзы, устройство хранят в специальном чехле.

Важно! Лазерный резак является своего рода оружием, поэтому нельзя направлять его на людей, животных и давать в руки детям. Носить его в кармане не рекомендуется.

Следует заметить, что лазерная резка своими руками толстых заготовок невозможна, но с бытовыми задачами он вполне справится.

Здравствуйте дамы и господа. Сегодня я открываю серию статей, посвященных мощным лазерам, ибо хабрапоиск говорит, что люди ищут подобные статьи. Хочу рассказать, как можно в домашних условиях сделать довольно мощный лазер, а также научить вас использовать эту мощь не просто ради «посветить на облака».

Предупреждение!

В статье описано изготовление мощного лазера (300мВт ~ мощность 500 китайских указок), который может нанести вред вашему здоровью и здоровью окружающих! Будьте предельно осторожны! Используйте специальные защитные очки и не направляйте луч лазера на людей и животных!

На Хабре всего пару раз проскакивали статьи о портативных лазерах Dragon Lasers, таких, как Hulk. В этой статье я расскажу, как можно сделать лазер, не уступающий по мощности продаваемым в этом магазине большинству моделей.

Для начала нужно подготовить все комплектующие:

  • — нерабочий (или рабочий) DVD-RW привод со скорость записи 16х или выше;
  • — конденсаторы 100 пФ и 100 мФ;
  • — резистор 2-5 Ом;
  • — три аккумулятора ААА;
  • — паяльник и провода;
  • — коллиматор (или китайская указка);
  • — стальной светодиодный фонарь.

Это необходимый минимум для изготовления простой модели драйвера. Драйвер — это, собственно, плата которая будет выводить наш лазерный диод на нужную мощность. Подключать напрямую источник питания к лазерному диоду не стоит — выйдет из строя. Лазерный диод нужно питать током, а не напряжением.

Коллиматор — это, собственно, модуль с линзой, которая сводит всё излучение в узкий луч. Готовые коллиматоры можно купить в радиомагазинах. В таких уже сразу имеется удобное место для установки лазерного диода, а стоимость составляет 200-500 рублей.

Можно использовать и коллиматор из китайской указки, однако, лазерный диод будет сложно закрепить, а сам корпус коллиматора, наверняка, будет сделан из металлизированного пластика. А значит наш диод будет плохо охлаждаться. Но и это возможно. Именно такой вариант можно посмотреть в конце статьи.

Сначала необходимо добыть сам лазерный диод. Это очень хрупкая и маленькая деталь нашего DVD-RW привода — будьте аккуратны. Мощный красный лазерный диод находится в каретке нашего привода. Отличить его от слабого можно по радиатору большего размера, нежели у обычного ИК-диода.

Рекомендуется использовать антистатический браслет, так как лазерный диод очень чувствителен к статическому напряжению. Если браслета нет, то можно обмотать выводы диода тонкой проволочкой, пока он будет ждать установки в корпус.

По этой схеме нужно спаять драйвер.

Не перепутайте полярность! Лазерный диод также выйдет из строя мгновенно при неправильной полярности подводимого питания.

На схеме указан конденсатор 200 мФ, однако, для портативности вполне хватит и 50-100 мФ.

Прежде чем устанавливать лазерный диод и собирать всё в корпус, проверьте работоспособность драйвера. Подключите другой лазерный диод (нерабочий или второй, что из привода) и замерьте силу тока мультиметром. В зависимости от скоростных характеристик силу тока нужно выбирать правильно. Для 16х моделей вполне подойдет 300-350мА. Для самых быстрых 22х можно подать даже 500мА, но уже совсем другим драйвером, изготовление которого я планирую описать в другой статье.

Выглядит ужасно, но работает!

Эстетика.

Собранным на весу лазером похвастаться можно только перед такими же сумасшедшими техно-маньяками, но для красоты и удобства лучше собрать в удобный корпус. Тут уже лучше выбрать самому, как понравится. Я же смонтировал всю схему в обычный светодиодный фонарь. Его размеры не превышают 10х4см. Однако, не советую носить его с собой: мало ли какие претензии могут предъявить соответствующие органы. А хранить лучше в специальном чехле, дабы не запылилась чувствительная линза.

Это вариант с минимальными затратами — используется коллиматор от китайской указки:

Использование фабрично-изготовленного модуля позволит получить вот такие результаты:

Луч лазера виден вечером:

И, разумеется, в темноте:

Возможно.

Да, я хочу в следующих статьях рассказать и показать, как можно использовать подобные лазеры. Как сделать гораздо более мощные экземпляры, способные резать металл и дерево, а не только поджигать спички и плавить пластик. Как изготавливать голограммы и сканировать предметы для получения моделей 3D Studio Max. Как сделать мощные зеленый или синий лазеры. Сфера применения лазеров довольно широка, и одной статьёй тут не обойтись.

Внимание! На забывайте о технике безопасности! Лазеры — это не игрушка! Берегите глаза!

Сегодня мы поговорим о том, как сделать самостоятельно мощный зеленый или синий лазер в домашних условиях из подручных материалов своими руками. Также рассмотрим чертежи, схемы и устройство самодельных лазерных указок с поджигающим лучом и дальностью до 20 км

Основой устройства лазера служит оптический квантовый генератор, который, используя электрическую, тепловую, химическую или другую энергию, производит лазерный луч.

В основе работы лазера служит явление вынужденного (индуцированного) излучения. Излучение лазера может быть непрерывным, с постоянной мощностью, или импульсным, достигающим предельно больших пиковых мощностей. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение, то есть является его точной копией. Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу
Вероятность того, что случайный фотон вызовет индуцированное излучение возбуждённого атома, в точности равняется вероятности поглощения этого фотона атомом, находящимся в невозбуждённом состоянии. Поэтому для усиления света необходимо, чтобы возбуждённых атомов в среде было больше, чем невозбуждённых. В состоянии равновесия это условие не выполняется, поэтому используются различные системы накачки активной среды лазера (оптические, электрические, химические и др.). В некоторых схемах рабочий элемент лазера используется в качестве оптического усилителя для излучения от другого источника.

В квантовом генераторе нет внешнего потока фотонов, инверсная заселенность создается внутри него с помощью различных источников накачки. В зависимости от источников существуют различные способы накачки:
оптический — мощная лампа-вспышка;
газовый разряд в рабочем веществе (активной среде);
инжекция (перенос) носителей тока в полупроводнике в зоне
р—п переходах;
электронное возбуждение (облучение в вакууме чистого полупроводника потоком электронов);
тепловой (нагревание газа с последующим его резким охлаждением;
химический (использование энергии химических реакций) и некоторые другие.

Первоисточником генерации является процесс спонтанного излучения, поэтому для обеспечения преемственности поколений фотонов необходимо существование положительной обратной связи, за счёт которой излучённые фотоны вызывают последующие акты индуцированного излучения. Для этого активная среда лазера помещается в оптический резонатор. В простейшем случае он представляет собой два зеркала, одно из которых полупрозрачное — через него луч лазера частично выходит из резонатора.

Отражаясь от зеркал, пучок излучения многократно проходит по резонатору, вызывая в нём индуцированные переходы. Излучение может быть как непрерывным, так и импульсным. При этом, используя различные приборы для быстрого выключения и включения обратной связи и уменьшения тем самым периода импульсов, возможно создать условия для генерации излучения очень большой мощности - это так называемые гигантские импульсы. Этот режим работы лазера называют режимом модулированной добротности.
Лазерный луч представляет собой когерентный, монохромный, поляризованный узконаправленный световой поток. Одним словом, это луч света, испускаемый мало того, что синхронными источниками, так еще и в очень узком диапазоне, причем направленно. Этакий чрезвычайно сконцентрированный световой поток.

Генерируемое лазером излучение является монохроматическим, вероятность излучения фотона определённой длины волны больше, чем близко расположенной, связанной с уширением спектральной линии и вероятность индуцированных переходов на этой частоте тоже имеет максимум. Поэтому постепенно в процессе генерации фотоны данной длины волны будут доминировать над всеми остальными фотонами. Кроме этого, из-за особого расположения зеркал в лазерном луче сохраняются лишь те фотоны, которые распространяются в направлении, параллельном оптической оси резонатора на небольшом расстоянии от неё, остальные фотоны быстро покидают объём резонатора. Таким образом луч лазера имеет очень малый угол расходимости. Наконец, луч лазера имеет строго определённую поляризацию. Для этого в резонатор вводят различные поляризаторы, например, ими могут служить плоские стеклянные пластинки, установленные под углом Брюстера к направлению распространения луча лазера.

От того, какое рабочее тело использовано в лазере, зависит рабочая длина его волны, а также остальные свойства. Рабочее тело подвергается "накачке" энергией, чтобы получить эффект инверсии электронных населённостей, который вызывает вынужденное излучение фотонов и эффект оптического усиления. Простейшей формой оптического резонатора являются два параллельных зеркала (их также может быть четыре и больше), расположенных вокруг рабочего тела лазера. Вынужденное излучение рабочего тела отражается зеркалами обратно и опять усиливается. До момента выхода наружу волна может отражаться многократно.

Итак, сформулируем кратко условия, необходимые для создания источника когерентного света:

нужно рабочее вещество с инверсной населенностью. Только тогда можно получить усиление света за счет вынужденных переходов;
рабочее вещество следует поместить между зеркалами, которые осуществляют обратную связь;
усиление, даваемое рабочим веществом, а значит, число возбужденных атомов или молекул в рабочем веществе должно быть больше порогового значения, зависящего от коэффициента отражения выходного зеркала.

В конструкции лазеров могут быть использованы следующие типы рабочих тел:

Жидкость. Применяется в качестве рабочего тела, например, в лазерах на красителях. В состав входят органический растворитель (метанол, этанол или этиленгликоль), в котором растворены химические красители (кумарин или родамин). Рабочая длина волны жидкостных лазеров определяется конфигурацией молекул используемого красителя.

Газы. В частности, углекислый газ, аргон, криптон или газовые смеси, как в гелий-неоновых лазерах. "Накачка" энергией этих лазеров чаще всего осуществляется с помощью электрических разрядов.
Твёрдые тела (кристаллы и стёкла). Сплошной материал таких рабочих тел активируется (легируется) посредством добавления небольшого количества ионов хрома, неодима, эрбия или титана. Обычно используются следующие кристаллы: алюмо-иттриевый гранат, литиево-иттриевый фторид, сапфир (оксид алюминия) и силикатное стекло. Твердотельные лазеры обычно "накачиваются" импульсной лампой или другим лазером.

Полупроводники. Материал, в котором переход электронов между энергетическими уровнями может сопровождаться излучением. Полупроводниковые лазеры очень компактны, "накачиваются" электрическим током, что позволяет использовать их в бытовых устройствах, таких как проигрыватели компакт-дисков.

Чтобы превратить усилитель в генератор, необходимо организовать обратную связь. В лазерах она достигается при помещении активного вещества между отражающими поверхностями (зеркалами), образующими так называемый "открытый резонатор" за счет того, что часть излученной активным веществом энергии отражается от зеркал и опять возвращается в активное вещество

В Лазере используются оптические резонаторы различных типов - с плоскими зеркалами, сферическими, комбинациями плоских и сферических и др. В оптических резонаторах, обеспечивающих обратную связь в Лазере, могут возбуждаться только некоторые определённые типы колебаний электромагнитного поля, которые называются собственными колебаниями или модами резонатора.

Моды характеризуются частотой и формой, т. е. пространственным распределением колебаний. В резонаторе с плоскими зеркалами преимущественно возбуждаются типы колебаний, соответствующие плоским волнам, распространяющимся вдоль оси резонатора. Система из двух параллельных зеркал резонирует только на определенных частотах - и выполняет в лазере еще и ту роль, которую в обычных низкочастотных генераторах играет колебательный контур.

Использование именно открытого резонатора (а не закрытого - замкнутой металлической полости - характерного для СВЧ диапазона) принципиально, так как в оптическом диапазоне резонатор с размерами L = ? (L - характерный размер резонатора,? - длина волны) просто не может быть изготовлен, а при L >> ? закрытый резонатор теряет резонансные свойства, поскольку число возможных типов колебаний становится настолько большим, что они перекрываются.

Отсутствие боковых стенок значительно уменьшает число возможных типов колебаний (мод) за счет того, что волны, распространяющиеся под углом к оси резонатора, быстро уходят за его пределы, и позволяет сохранить резонансные свойства резонатора при L >> ?. Однако резонатор в лазере не только обеспечивает обратную связь за счет возврата отраженного от зеркал излучения в активное вещество, но и определяет спектр излучения лазера, его энергетические характеристики, направленность излучения.
В простейшем приближении плоской волны условие резонанса в резонаторе с плоскими зеркалами заключается в том, что на длине резонатора укладывается целое число полуволн: L=q(?/2) (q - целое число), что приводит к выражению для частоты типа колебаний с индексом q: ?q=q(C/2L). В результате спектр излучения Л., как правило, представляет собой набор узких спектральных линий, интервалы между которыми одинаковы и равны c/2L. Число линий (компонент) при заданной длине L зависит от свойств активной среды, т. е. от спектра спонтанного излучения на используемом квантовом переходе и может достигать нескольких десятков и сотен. При определённых условиях оказывается возможным выделить одну спектральную компоненту, т. е. осуществить одномодовый режим генерации. Спектральная ширина каждой из компонент определяется потерями энергии в резонаторе и, в первую очередь, пропусканием и поглощением света зеркалами.

Частотный профиль коэффициента усиления в рабочем веществе (он определяется шириной и формой линии рабочего вещества) и набор собственных частот открытого резонатора. Для используемых в лазерах открытых резонаторов с высокой добротностью полоса пропускания резонатора??p, определяющая ширину резонансных кривых отдельных мод, и даже расстояние между соседними модами??h оказываются меньше, чем ширина линии усиления??h, причем даже в газовых лазерах, где уширение линий наименьшее. Поэтому в контур усиления попадает несколько типов колебаний резонатора.

Таким образом, лазер не обязательно генерирует на одной частоте, чаще наоборот, генерация происходит одновременно на нескольких типах колебаний, для которых усиление? больше потерь в резонаторе. Для того чтобы лазер работал на одной частоте (в одночастотном режиме), необходимо, как правило, принимать специальные меры (например, увеличить потери, как это показано на рисунке 3) или изменить расстояние между зеркалами так, чтобы и в контур усиления попадала только одна мода. Поскольку в оптике, как отмечено выше, ?h > ?p и частота генерации в лазере определяется в основном частотой резонатора, то, чтобы держать стабильной частоту генерации, необходимо стабилизировать резонатор. Итак, если коэффициент усиления в рабочем веществе перекрывает потери в резонаторе для определенных типов колебаний, на них возникает генерация. Затравкой для ее возникновения являются, как и в любом генераторе, шумы, представляющие в лазерах спонтанное излучение.
Для того, чтобы активная среда излучала когерентный монохроматический свет, необходимо ввести обратную связь, т. е. часть излученного этой средой светового потока направить обратно в среду для осуществления вынужденного излучения. Положительная обратная связь осуществляется при помощи оптических резонаторов, которые в элементарном варианте представляют собой два соосно (параллельно и по одной оси) расположенных зеркала, одно из которых полупрозрачное, а другое — «глухое», т. е. полностью отражает световой поток. Рабочее вещество (активная среда), в котором создана инверсная заселенность, располагают между зеркалами. Вынужденное излучение проходит через активную среду, усиливается, отражается от зеркала, вновь проходит через среду и еще более усиливается. Через полупрозрачное зеркало часть излучения испускается во внешнюю среду, а часть отражается обратно в среду и снова усиливается. При определенных условиях поток фотонов внутри рабочего вещества начнет лавинообразно нарастать, начнется генерация монохроматического когерентного света.

Принцип работы оптического резонатора, преобладающее количество частиц рабочего вещества, представленные светлыми кружками, находятся в основном состоянии, т. е. на нижнем энергетическом уровне. Лишь небольшое количество частиц, представленные темными кружками, находятся в электронно-возбужденном состоянии. При воздействии на рабочее вещество источником накачки основное количество частиц переходит в возбужденное состояние (возросло количество темных кружков), создана инверсная заселенность. Далее (рис. 2в) происходит спонтанное излучение некоторых частиц, находящихся в электронно-возбужденном состоянии. Излучение, направленное под углом к оси резонатора, покинет рабочее вещество и резонатор. Излучение, которое направлено вдоль оси резонатора, подойдет к зеркальной поверхности.

У полупрозрачного зеркала часть излучения пройдет сквозь него в окружающую среду, а часть отразится и снова направится в рабочее вещество, вовлекая в процесс вынужденного излучения частицы, находящиеся в возбужденном состоянии.

У «глухого» зеркала весь лучевой поток отразится и вновь пройдет рабочее вещество, индуцируя излучение всех оставшихся возбужденных частиц, где отражена ситуация, когда все возбужденные частицы отдали свою запасенную энергию, а на выходе резонатора, на стороне полупрозрачного зеркала образовался мощный поток индуцированного излучения.

Основные конструктивные элементы лазеров включают в себя рабочее вещество с определенными энергетическими уровнями составляющих их атомов и молекул, источник накачки, создающий инверсную заселенность в рабочем веществе, и оптический резонатор. Существует большое количество различных лазеров, однако все они имеют одну и ту же и притом простую принципиальную схему устройства, которая представлена на рис. 3.

Исключение составляют полупроводниковые лазеры из-за своей специфичности, поскольку у них всё особенное: и физика процессов, и методы накачки, и конструкция. Полупроводники представляют собой кристаллические образования. В отдельном атоме энергия электрона принимает строго определенные дискретные значения, и поэтому энергетические состояния электрона в атоме описываются на языке уровней. В кристалле полупроводника энергетические уровни образуют энергетические зоны. В чистом, не содержащем каких-либо примесей полупроводнике имеются две зоны: так называемая валентная зона и расположенная над ней (по шкале энергий) зона проводимости.

Между ними имеется промежуток запрещенных значений энергии, который называется запрещенной зоной. При температуре полупроводника, равной абсолютному нулю, валентная зона должна быть полностью заполнена электронами, а зона проводимости должна быть пустой. В реальных условиях температура всегда выше абсолютного нуля. Но повышение температуры приводит к тепловому возбуждению электронов, часть из них перескакивает из валентной зоны в зону проводимости.

В результате этого процесса в зоне проводимости появляется некоторое (относительно небольшое) количество электронов, а в валентной зоне до ее полного заполнения будет не хватать соответствующего количества электронов. Электронная вакансия в валентной зоне представляется положительно заряженной частицей, которая именуется дыркой. Квантовый переход электрона через запрещенную зону снизу вверх рассматривается как процесс генерации электронно-дырочной пары, при этом электроны сосредоточены у нижнего края зоны проводимости, а дырки — у верхнего края валентной зоны. Переходы через запрещенную зону возможны не только снизу вверх, но и сверху вниз. Такой процесс называется рекомбинацией электрона и дырки.

При облучении чистого полупроводника светом, энергия фотонов которого несколько превышает ширину запрещенной зоны, в кристалле полупроводника могут совершаться три типа взаимодействия света с.веществом: поглощение, спонтанное испускание и вынужденное испускание света. Первый тип взаимодействия возможен при поглощении фотона электроном, находящимся вблизи верхнего края валентной зоны. При этом энергетическая мощность электрона станет достаточной для преодоления запрещенной зоны, и он совершит квантовый переход в зону проводимости. Спонтанное испускание света возможно при самопроизвольном возвращении электрона из зоны проводимости в валентную зону с испусканием кванта энергии — фотона. Внешнее излучение может инициировать переход в валентную зону электрона, находящегося вблизи нижнего края зоны проводимости. Результатом этого, третьего типа взаимодействия света с веществом полупроводника будет рождение вторичного фотона, идентичного по своим параметрам и направлению движения фотону, инициировавшему переход.

Для генерации лазерного излучения необходимо создать в полупроводнике инверсную заселенность «рабочих уровней» — создать достаточно высокую концентрацию электронов у нижнего края зоны проводимости и соответственно высокую концентрацию дырок у края валентной зоны. Для этих целей в чистых полупроводниковых лазерах обычно применяют накачку потоком электронов.

Зеркалами резонатора являются отполированные грани кристалла полупроводника. Недостатком таких лазеров является то, что многие полупроводниковые материалы генерируют лазерное излучение лишь при очень низких температурах, а бомбардировка кристаллов полупроводников потоком электронов вызывает его сильное нагревание. Это требует наличия дополнительных охладительных устройств, что усложняет конструкцию аппарата и увеличивает его габариты.

Свойства полупроводников с примесями существенно отличаются от свойств беспримесных, чистых полупроводников. Это обусловлено тем, что атомы одних примесей легко отдают в зону проводимости по одному из своих электронов. Эти примеси называются донорными, а полупроводник с такими примесями — п-полупро- водником. Атомы других примесей, напротив, захватывают по одному электрону из валентной зоны, и такие примеси являются акцепторными, а полупроводник с такими примесями — р-полу- проводником. Энергетический уровень примесных атомов располагается внутри запрещенной зоны: у «-полупроводников — недалеко от нижнего края зоны проводимости, у /^-полупроводников — вблизи верхнего края валентной зоны.

Если в этой области создать электрическое напряжение так, чтобы со стороны р-полупроводника был положительный полюс, а со стороны п-полупроводника отрицательный, то под действием электрического поля электроны из п-полупроводника и дырки из /^-полупроводника будут перемещаться (инжектироваться) в область р-п — перехода.

При рекомбинации электронов и дырок будут испускаться фотоны, а при наличии оптического резонатора возможна генерация лазерного излучения.

Зеркалами оптического резонатора являются отполированные грани кристалла полупроводника, ориентированные перпендикулярно плоскости р-п — перехода. Такие лазеры отличаются миниатюрностью, поскольку размеры полупроводникового активного элемента могут составлять около 1 мм.

В зависимости от рассматриваемого признака все лазеры подразделяются следующим образом).

Первый признак. Принято различать лазерные усилители и генераторы. В усилителях на входе подается слабое лазерное излучение, а на выходе оно соответственно усиливается. В генераторах нет внешнего излучения, оно возникает в рабочем веществе за счет его возбуждения с помощью различных источников накачки. Все медицинские лазерные аппараты являются генераторами.

Второй признак — физическое состояние рабочего вещества. В соответствии с этим лазеры подразделяются на твердотельные (рубиновые, сапфировые и др.), газовые (гелий-неоновые, гелий- кадмиевые, аргоновые, углекислотные и др.), жидкосные (жидкий диэлектрик с примесными рабочими атомами редкоземельных металлов) и полупроводниковые (арсенид-галлиевые, арсенид-фосфид- галлиевые, селенид-свинцовые и др.).

Способ возбуждения рабочего вещества является третьим отличительным признаком лазеров. В зависимости от источника возбуждения различают лазеры с оптической накачкой, с накачкой за счет газового разряда, электронного возбуждения, инжекции носителей заряда, с тепловой, химической накачкой и некоторые другие.

Спектр излучения лазера является следующим признаком классификации. Если излучение сосредоточено в узком интервале длин волн, то принято считать лазер монохроматичным и в его технических данных указывается конкретная длина волны; если в широком интервале, то следует считать лазер широкополосным и указывается диапазон длин волн.

По характеру излучаемой энергии различают импульсные лазеры и лазеры с непрерывным излучением. Не следует смешивать понятия импульсный лазер и лазер с частотной модуляцией непрерывного излучения, поскольку во втором случае мы получаем по сути дела прерывистое излучение различной частоты. Импульсные лазеры обладают большой мощностью в одиночном импульсе, достигающие 10 Вт, тогда как их среднеимпульсная мощность, определяемая по соответствующим формулам, сравнительно невелика. У непрерывных лазеров с частотной модуляцией мощность в так называемом импульсе ниже мощности непрерывного излучения.

По средней выходной мощности излучения (следующий признак классификации) лазеры подразделяются на:

· высокоэнергетические (создаваемая плотность потока мощность излучения на поверхности объекта или биообъекта — свыше 10 Вт/см2);

· среднеэнергетические (создаваемая плотность потока мощность излучения — от 0,4 до 10 Вт/см2);

· низкоэнергетические (создаваемая плотность потока мощность излучения — менее 0,4 Вт/см2).

· мягкое (создаваемая энергетическая облученность — Е или плотность потока мощности на облучаемой поверхности — до 4 мВт/см2);

· среднее (Е — от 4 до 30 мВт/см2);

· жесткое (Е — более 30 мВт/см2).

В соответствии с «Санитарными нормами и правилами устройства и эксплуатации лазеров № 5804-91» по степени опасности генерируемого излучения для обслуживающего персонала лазеры подразделяются на четыре класса.

К лазерам первого класса относятся такие технические устройства, выходное коллиминированное (заключенное в ограниченном телесном угле) излучение которых не представляет опасность при облучении глаз и кожи человека.

Лазеры второго класса — это устройства, выходное излучение которых представляет опасность при облучении глаз прямым и зеркально отраженным излучением.

Лазеры третьего класса — это устройства, выходное излучение которых представляет опасность при облучении глаз прямым и зеркально отраженным, а также диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности, и (или) при облучении кожи прямым и зеркально отраженным излучением.

Лазеры четвертого класса — это устройства, выходное излучение которых представляет опасность при облучении кожи диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности.

Каждый из нас держал в руках лазерную указку. Несмотря на декоративность применения, в ней находится самый настоящий лазер, собранный на основе полупроводникового диода. Такие же элементы устанавливаются на лазерных уровнях и .

Следующее популярное изделие, собранное на полупроводнике – записывающий DVD привод вашего компьютера. В нем установлен более мощный лазерный диод, обладающей термической разрушительной силой.

Это позволяет прожигать слой диска, нанося на него дорожки с цифровой информацией.

Как работает полупроводниковый лазер?

Устройства подобного типа недорогие в производстве, конструкция достаточно массовая. Принцип лазерных (полупроводниковых) диодов основан на использовании классического p-n перехода. Работает такой переход, как и в обычных светодиодах.

Разница в организации излучения: светодиоды излучают «спонтанно», а лазерные диоды «вынужденно».

Общий принцип формирования так называемой «заселенности» квантового излучения выполняется без зеркал. Края кристалла скалываются механическим путем, обеспечивая эффект преломления на торцах, сродни зеркальной поверхности.

Для получения различного типа излучения может использоваться «гомопереход», когда оба полупроводника одинаковые, или «гетеропереход», с разными материалами перехода.


Собственно лазерный диод является доступной радиодеталью. Его можно купить в магазинах, торгующих радиодеталями, а можно извлечь из старого привода DVD-R (DVD-RW).

Важно! Даже простой лазер, используемый в световых указках, может серьезно повредить сетчатку глаза.

Более мощные установки, с прожигающим лучом, могут лишить зрения или нанести ожоги кожного покрова. Поэтому при работе с подобными устройствами, соблюдайте предельную осторожность.

Имея в распоряжении такой диод, вы сможете легко изготовить мощный лазер своими руками. Фактически, изделие может быть вовсе бесплатным, или обойдется вам за смешные деньги.

Лазер своими руками из ДВД привода

Для начала, необходимо раздобыть сам привод. Его можно снять со старого компьютера или приобрести на барахолке за символическую стоимость.

Лазерная указка - полезный предмет, предназначение которого зависит от мощности. Если она не очень велика, то луч можно наводить на удаленные предметы. В этом случае указка может играть роль игрушки и использоваться для развлечения. Она же может нести и практическую пользу, помогая человеку показывать на тот объект, о котором он говорит. Используя подручные предметы, можно изготовить лазер своими руками.

Кратко об устройстве

Лазер был изобретен в результате проверки теоретических предположений ученых, занимающихся еще только начавшей тогда зарождаться квантовой физикой. Принцип, положенный в основу лазерной указки, был предсказан Эйнштейном еще вначале XX в. Недаром это приспособление так называется - «указка».

Более мощные лазеры используются для выжигания. Указка дает возможность реализовать творческий потенциал , например, с их помощью можно выгравировать на дереве или на оргстекле красивый качественный узор. Самые мощные лазеры могут разрезать металл, поэтому они применяются в строительных и ремонтных работах.

Принцип действия лазерной указки

По принципу действия лазер представляет собой генератор фотонов. Суть явления, которое лежит в его основе, состоит в том, что на атом оказывает воздействие энергия в виде фотона. В результате этот атом излучает следующий фотон, который движется в том же направлении, что и предыдущий. Эти фотоны имеют одну и ту же фазу и поляризацию. Разумеется, излучаемый свет в этом случае усиливается. Такое явление может произойти только в отсутствии термодинамического равновесия. Чтобы создать индуцированное излучение, применяют разные способы: химические, электрические, газовые и другие.

Само слово «лазер» возникло не на пустом месте. Оно образовалось в результате сокращения слов, описывающих суть процесса. На английском полное название этого процесса звучит так: «light amplification by stimulated emission of radiation», что на русский переводится как «усиление света посредством вынужденного излучения». Если говорить по-научному, то лазерная указка - это оптический квантовый генератор .

Подготовка к изготовлению

Как говорилось выше, можно сделать лазер своими руками в домашних условиях. Для этого следует подготовить следующие инструменты, а также простые предметы, которые практически всегда имеются в домашнем обиходе:

Этих материалов хватит, чтобы выполнить все работы по изготовлению как простого, так и мощного лазера своими руками.

Самостоятельная сборка лазера

Потребуется найти дисковод. Главное, чтобы его лазерный диод был исправен. Конечно, дома такого предмета может и не быть. В этом случае его можно приобрести у тех, у кого он есть. Зачастую люди выбрасывают оптические приводы, даже если их лазерный диод еще работает или продают их.

Выбирая привод для изготовления лазерного устройства, нужно обращать внимание на фирму, в которой он был выпущен . Главное, чтобы этой фирмой не была Samsung: приводы от этого производителя оснащены диодами, которые не имеют защиту от наружного воздействия. Следовательно, такие диоды быстро загрязняются и подвергаются тепловым нагрузкам. Они могут быть повреждены даже в результате легкого прикосновения.

Лучше всего для изготовления лазера подходят приводы от компании LG: каждая их модель оснащается мощным кристаллом.

Важно, чтобы привод при использовании по прямому назначению мог не только считывать, но и записывать информацию на диск. В записывающих принтерах есть инфракрасный излучатель, необходимый для сборки лазерного устройства.

Работа заключена в следующих действиях:

Готовая лазерная указка, сделанная своими руками, может с легкостью разрезать целлофановые пакеты и моментально взрывать воздушные шары. Если же навести этот самодельный прибор на деревянную поверхность, то луч сию же минуту прожжет ее. При использовании необходимо соблюдать меры осторожности.