Стоимостной межотраслевой баланс. Принципиальная схема межотраслевого баланса. Ш экономико-математические модели, их сущность и виды

Стоимостной межотраслевой баланс. Принципиальная схема межотраслевого баланса. Ш экономико-математические модели, их сущность и виды

Межотраслевой баланс (МОБ, метод «затраты-выпуск») - экономико-математическая балансовая модель, характеризующая межотраслевые производственные взаимосвязи в экономике страны. Характеризует связи между выпуском продукции в одной отрасли и затратами, расходованием продукции всех участвующих отраслей, необходимым для обеспечения этого выпуска. Межотраслевой баланс составляется в денежной и натуральной формах.

Межотраслевой баланс (МОБ) представлен в виде системы линейных уравнений. Он представляет собой таблицу, в которой отражен процесс формирования и использования совокупного общественного продукта в отраслевом разрезе. Таблица показывает структуру затрат на производство каждого продукта и структуру его распределения в экономике. По столбцам отражается стоимостный состав валового выпуска отраслей экономики по элементам промежуточного потребления и добавленной стоимости. По строкам отражаются направления использования ресурсов каждой отрасли.

В модели МОБ выделяются четыре квадранта . В первом отражается промежуточное потребление и система производственных связей , во втором - структура конечного использования ВВП , в третьем - стоимостная структура ВВП , а в четвёртом - перераспределение национального дохода .

Теория межотраслевого баланса позволяет:

1. Произвести анализ и прогнозирование развития основных отраслей национальной экономики на различных уровнях - региональном, внутриотраслевом, межпродуктовом;

2. Произвести объективное и актуальное прогнозирование темпов и характера развития национальной экономики;

3. Определить характеристику основных макроэкономических показателей, при которых наступит состояние равновесия национальной экономики. В результате воздействия на них приблизиться к равновесному состоянию;

5. определить ресурсоемкость всей национальной экономики и отдельных ее отраслей;

6. определить направления повышения эффективности и рационализации международного и регионального разделения труда.

Система таблиц «Затраты-выпуск» выполняет две функции : статистическую и аналитическую.

1.Статистическая функция заключается в том, что система обеспечивает проверку согласованности экономической информации (предприятий, домохозяйтв, бюджетов, таможенных платежей), характеризующей потоки товаров и услуг.

2.Аналитическая функция системы выражается в возможностях ее использования для анализа состояния, динамики, прогнозирования процессов и моделирования сценариев развития экономики в результате изменения различных факторов. Именно через симметричную модель системы «Затраты-выпуск» В. Леонтьев разработал методы анализа взаимосвязей первичных затрат и выпуска продукции в отдельных отраслях и конечного спроса на них. В основе данного анализа лежит предположение, что затраты на производство продукции в течение определенного периода времени являются постоянной величиной .



К основным задачам межотраслевого баланса относятся:

- характеристика воспроизводственных процессов в экономике по материально-вещественному составу в детальном отраслевом разрезе;

- отражение процесса производства и распределения продукции, созданной в сфере материального производства и услуг;

- детализация счетов товаров и услуг, производства, образования доходов и операций с капиталом на уровне отраслевых групп продуктов и услуг;

- выявление роли факторов производства и их эффективное использование для экономического развития.

Введение..................................................................................................... 3

1. Модель межотраслевого баланса............................................ 4

1. 1. Динамическая модель Леонтьева.................................................... 7

1. 2. Построение динамической модели Леонтьева............................. 12

2. Модель Неймана............................................................................... 16

Заключение............................................................................................. 20

Cписок литературы............................................................................. 21

Динамические модели экономики - модели, описывающие экономику в развитии (в отличие от статических, характеризующих ее состояние в определенный момент). Модель является динамической, если, как минимум, одна ее переменная относится к периоду времени, отличному от времени, к которому отнесены другие переменные.

В общем виде динамические модели экономики сводятся к описанию следующих экономических явлений: начального состояния экономики, технологических способов производства (каждый “способ” говорит о том, что из набора ресурсов x можно в течение единицы времени произвести набор продуктов y), а также критерия оптимальности.

Математическое описание динамических моделей экономики производится с помощью систем дифференциальных уравнений (в моделях с непрерывным временем), разностных уравнений (в моделях с дискретным временем), а также систем обыкновенных алгебраических уравнений.

С помощью динамических моделей решаются, в частности, следующие задачи планирования и прогнозирования экономических процессов: определение траектории экономической системы, ее состояний в заданные моменты времени, анализ системы на устойчивость, анализ структурных сдвигов.

С точки зрения теоретического анализа большое значение приобрела динамическая модель фон Неймана. Что же касается практического применения динамических моделей экономики, то оно находится еще в начальной стадии: расчеты по модели, хотя бы сколько-нибудь приближающейся к реальности, чрезвычайно сложны. Но развитие в этом направлении продолжается. Используются, в частности, многоотраслевые (многосекторные) динамические модели развития экономики, к которым относятся динамические модели межотраслевого баланса, а также производственная функция, теория экономического роста.

Межотраслевое моделирование является частью макроэкономического

моделирования и служит для анализа и оценки состояния общего экономического равновесия национальной экономики. Национальная

экономика в межотраслевом балансе представлена рядом чистых отраслей,

связанных между собой финансовыми потоками от реализации продукции,

работ и услуг. Чистые отрасли – это условные отрасли, представляющие

производство одного или нескольких однородных продуктов.

Динамические модели межотраслевого баланса - частный случай динамических моделей экономики; основаны на принципе межотраслевого баланса, в который дополнительно вводятся уравнения, характеризующие изменения межотраслевых связей во времени на основе отдельных показателей: напр., капитальных вложений и основных фондов (что позволяет создать преемственность между балансами отдельных периодов).

Основные предположения модели межотраслевого баланса:

· каждая отрасль выпускает ровно один продукт

· каждый продукт выпускается ровно одной отраслью

Число продуктов равно числу отраслей

Измерять интенсивность работы отрасли можно объёмом выпуска соответствующего продукта

· затраты любого продукта в каждой отрасли прямо пропорциональны её интенсивности

Межотраслевой баланс представляет собой экономико-математическую модель, образуемую перекрестным наложением строк и колонок таблицы, то есть балансов распределения продукции и затрат на ее производство, увязанных по итогам. Главные показатели здесь – коэффициенты полных и прямых затрат.

Динамическая модель межотраслевого баланса характеризует производственные связи народного хозяйства на ряд лет, отражает процесс воспроизводства в динамике. По модели межотраслевого баланса выполняются два типа расчетов: первый тип, когда по заданному уровню конечного потребления рассчитывается сбалансированный объем производства и распределения продукции; второй тип, включающий смешанные расчеты, когда по заданным объемам производства по одним отраслям (продуктам) и заданному конечному потреблению в других отраслях рассчитывается баланс производства и распределения продукции в полном объеме.

Наибольшее распространение получила матричная экономико-математическая модель межотраслевого баланса. Она представляет собой прямоугольную таблицу (матрицу), элементы которой отражают связи экономических объектов. Количественные значения этих объектов вычисляются по установленным в теории матриц правилам. В матричной модели отражается структура затрат на производство и распределение продукции и вновь созданной стоимости.

Таблица межотраслевого баланса производства и распределения

продукции,работ и услуг

В первом квадранте отражены данные о взаимных поставках продукции,

работ, услуг между отраслями. Первый квадрант называется квадрантом

промежуточного потребления и характеризует промежуточное потребление

(затраты) или промежуточный спрос отраслей при производстве продукции,

работ, услуг:

X ij – стоимость продукции i -й отрасли, поставленной в j -ю отрасль в

течение года, или стоимость продукции i -й отрасли, потребленной j

отраслью в течение года;

i -я строка – промежуточное потребление продукции i -й отрасли всеми

отраслями;

j -й столбец – потребление (затраты) в j -й отрасли продукции всех

отраслей при производстве своей продукции;

X i – стоимость валового продукта, произведенного i -й отраслью в

течение года.

Второй квадрант называется квадрантом конечного использования

(потребления) или конечного спроса. В нем представлено конечное использование продукции отраслей, распределенное на конечное потребление (С i ), инвестиции (I i ), экспорт (E i ) и импорт (M i ), сальдо во внешней торговле (E i M i ). Конечное потребление включает потребление домашних хозяйств (населения), государства и некоммерческих организаций.

Третий квадрант называется квадрантом добавленной стоимости. В нем

представлена добавленная стоимость, присоединенная в отраслях к затратам

продукции других отраслей при производстве продукции, работ, услуг.

Добавленная стоимость, произведенная в отраслях народного хозяйства,

включает: оплату труда (V j ), амортизацию (потребление основного капитала)

(C j ), чистый доход (m j ). Четвертый квадрант не заполняется.

В состав отраслей в МОБ входят отрасли материального производства:

промышленность (энергетика, машиностроение, легкая и пищевая

промышленность, строительство, сельское хозяйство) и отрасли

нематериальных услуг (жилищно-коммунальное хозяйство, банковская сфера, здравоохранение, образование, наука и др.). В реальный межотраслевой баланс входит около 30 отраслей. Межотраслевой баланс за прошедший год называется отчетным межотраслевым балансом.

Межотраслевой баланс известен в науке и практике как метод “затраты – выпуск”, разработанный В.В. Леонтьевым. Этот метод сводится к решению системы линейных уравнений, где параметрами являются коэффициенты затрат на производство продукции. Коэффициенты выражают отношения между секторами экономики (коэффициенты текущих материальных затрат), они устойчивы и поддаются прогнозированию. Решение системы уравнений позволяет определить, какими должны быть выпуск и затраты в каждой отрасли, чтобы обеспечить производство конечного продукта заданного объема и структуры. Для этого составляется таблица межотраслевых потоков товаров. Неизвестными выступают выпуск и затраты товаров, произведенных и использованных в каждой отрасли. Их исчисление с помощью коэффициентов и означает объемы производства, обеспечивающие общее равновесие. В случае выявления диспропорции с учетом заказов потребителей, в том числе и государственных, составляется план-матрица выпуска всех видов материальных благ и затрат на их производство.

Метод “затраты – выпуск” стал универсальным способом прогнозирования и планирования в условиях, как рыночной, так и директивной экономики. Он применяется в системе ООН, в США и других странах для прогнозирования и планирования экономики, структуры производства, межотраслевых связей.

В динамических моделях отражается процесс развития экономики. В них

производственные капитальные вложения выделяются из состава конечной

продукции, исследуется их структура и влияние на рост объема производства.

Схема динамического межотраслевого баланса представлена в таблице

Таблица содержит две матрицы. Элементы второй матрицы показывают, какое количество продукции i -й отрасли направлено в текущем периоде в j -ю отрасль в качестве производственных капитальных вложений в основные и оборотные средства.

В динамической схеме конечный продукт у i включает продукцию i- й отрасли, идущую в личное и общественное потребление, накопление

непроизводственной сферы, незавершенное строительство, на экспорт. Все

показатели даны в стоимостной форме.

В таблице выполняются следующие балансовые соотношения:

Межотраслевые потоки капитальных вложений относятся к периоду

(t- 1,t ). Динамика задается дополнительными соотношениями:

Экономический смысл коэффициентов ϕ ij = Кij /ΔХj следующий: они

показывают, какое количество продукции i -й отрасли должно быть вложено в

j -ю отрасль для увеличения выпуска ее продукции на единицу в

рассматриваемых единицах измерения. Коэффициенты ϕ ij называются

коэффициентами капитальных вложений или коэффициентами приростной

фондоемкости. Систему уравнений (1) с учетом (2) можно записать как:

Представим (3) в матричном виде:

(4)

Из (4) следует, что

Модель (3) называется дискретной динамической моделью межотраслевого баланса Леонтьева. Система уравнений (3) представляет собой систему линейных разностных уравнений 1-го порядка. Для исследования данной модели надо задать в начальный момент времени векторы X (0 ) и Y (t ) для t = 1, 2, …, T. Решением модели будут значения векторов X (t ), K (t ), t = 1, 2, …, T.

Условием разрешимости системы (3) относительно вектора Х (t ) является требование det (E A Ф ) ≠ 0

В данной модели предполагается, что прирост продукции в периоде

(t – 1, t ) обусловлен капиталовложениями, произведенными в том же периоде.

Для коротких периодов это предположение нереально, т.к. существуют

отставания во времени (временные лаги) между вложением средств в

производственные фонды и приростом выпуска продукции. Модели,

учитывающие лаги капитальных вложений, образуют особую группу

динамических моделей межотраслевого баланса.

Если перейти к непрерывному времени, то уравнения (3) перепишутся в виде системы дифференциальных уравнений 1-го порядка с постоянными коэффициентами:

(6)

Для ее решения помимо матриц коэффициентов текущих прямых

материальных затрат A = (a ij ) и коэффициентов капитальных затрат Ф = (ϕij )

необходимо знать уровни валового выпуска в начальный момент времени

t = 0 (x (0)) и закон изменения величин конечного продукта y (t ) на отрезке .

Решением системы уравнений (6) будут значения вектор-функции x (t )

на отрезке . Условием разрешимости системы (6) является det Ф ≠ 0 .

Более общей динамической межотраслевой моделью является модель,

учитывающая производственные мощности отраслей. Она представлена ниже в виде следующих соотношений:

(7)

(9)

Состояние экономики в году t характеризуется в динамике следующими

переменными:

Х t – вектор-столбец валовых выпусков отраслей;

v t –вектор ввода отраслевых мощностей;

γ − диагональная матрица выбытия мощностей;

x t – вектор-столбец отраслевых мощностей (максимально возможных выпусков);

l t = (l 1 , l 2 ,..., l n )t вектор трудоемкости отраслевых производств, может зависеть от времени;

L t объем трудовых ресурсов в экономике.

Время в модели дискретно и изменяется через промежутки, равные году

(t = 1, 2, …, T ). Коэффициенты матрицы прямых затрат А = ║аij║ и матрицы

капиталоемкости прироста производственных мощностей Ф = ║фij║ могут

зависеть от времени. Экзогенно заданы вектор-функция Y t и числовая функция L t . Решением модели являются векторы Х t и x t , удовлетворяющие системе неравенств (7)-(10).

Неравенства (7) показывают, что вектор валового продукта X t должен

обеспечивать текущие производственные затраты t , затраты продукции на

ввод производственных мощностей ФV t и на непроизводственное потребление Y t. Неравенства (8) ограничивают валовые выпуски отраслей наличными мощностями, неравенства (9) представляют собой отраслевые балансы изменения производственных мощностей с учетом их выбытия и ввода, неравенства (10) показывают, что общая занятость ограничена имеющимися трудовыми ресурсами.

Определим величины, характеризующие изменения валового выпуска 5 отраслей по 7 временным интервалам.

Рыбная -25056 -46023 -27579 -9222 18357 -22098 -79866
Логистика 101607 -1499 56461 8932 226650 -181033 -583399
Судоремонтная -7076 29510 9728 55934 -35028 15280 -432869
Пищевая 10100 11822 39809 -54373 12350 35889 -532456
Машино и приборо-строение 11706 2156 16085 -97206 36989 9201 -543768

Теперь воспроизведем матрицу D. Коэффициент d ij матрицы D равен количе­ству продукции отрасли i, необходимой для увеличения на единицу (в стоимост­ном выражении) фонда отрасли j. Коэффициенты d ij именуются ко­эффициентами капиталоемкости приростов ОПФ.

Производство продукции, B Потребление продукции

Конечная продукция Y

Валовой выпуск

Рыбная Логистика Судоремонтная Пищевая Машино и приборо-строение
Рыбная 1 5,5 1,5 5 6 56700 101964
Логистика 6 1 5 4,5 3 56430 204324
Судоремонтная 4,5 5 1 6 6 390860 508326
Пищевая 5 5 5 1 6 787890 1289754
Машино и приборо-строение 4 4 5 4 1 323630 734563

Построим матрицу К коэффициентов капитальных затрат или капи­тальных коэффициентов.

Производство продукции, B Потребление продукции Конечная продукция Y Валовый выпуск
Рыбная Логистика Судоремонтная Пищевая Машино и приборо-строение
Рыбная 0,8 4,4 1,2 4 4,8 56700 101964
Логистика 4,8 0,8 4 3,6 2,4 56430 204324
Судоремонтная 3,6 4 0,8 4,8 4,8 390860 508326
Пищевая 4 4 4 0,8 4,8 787890 1289754
Машино и приборо-строение 3,2 3,2 4 3,2 0,8 323630 734563

Теперь определим

Пусть Ф 0 =0,

(Матрица А - матрица прямых затрат)

Итак, мы имеем первый вектор

Отрасль x при t=1 Ф при t=1 y при t=1
Рыбная 191487 -20044,8 -3,601*10^4
Логистика 372281 81285,6 7,575*10^4
Судоремонтная 364521 -5660,8 2,697*10^3
Пищевая 476859 8080 1,824*10^4
Машино и приборо-строение 564837 9364,8 -8,428*10^3

Аналогичным образом получаются таблицы для t = 2, 3, 4, 5, 6.

Отрасль x при t=2 Ф при t=2 y при t=2
Рыбная 166431 -56863,2 -6,808*10^4
Логистика 473888 80086,4 -6,632*10^3
Судоремонтная 357445 17947,2 2,495*10^4
Пищевая 486959 17537,6 2,816*10^4
Машино и приборо-строение 576543 11089,6 5,698*10^3
Отрасль x при t=3 Ф при t=3 y при t=3
Рыбная 120408 -78926,4 -4,702*10^4
Логистика 472389 125255,2 2,757*10^4
Судоремонтная 386955 25729,6 8,966*10^3
Пищевая 498781 49384,8 3,867*10^4
Машино и приборо-строение 578699 23957,6 -3,451*10^3
Отрасль x при t=4 Ф при t=4 y при t=4
Рыбная 92829 -86304 -4,489*10^4
Логистика 528850 132400,8 5,323*10^4
Судоремонтная 396683 70476,8 3,166*10^4
Пищевая 538590 5886,4 -3,038*10^4
Машино и приборо-строение 594784 -53807,2 -6,271*10^4
Отрасль x при t=5 Ф при t=5 y при t=5
Рыбная 83607 -71618,4 8,141*10^3
Логистика 537782 313720,8 1,671*10^5
Судоремонтная 452617 42454,4 -2,388*10^4
Пищевая 484217 15766,4 -2,626*10^3
Машино и приборо-строение 497578 -24216 -2,208*10^4
Отрасль x при t=6 Ф при t=6 y при t=6
Рыбная 101964 -89296,8 -9,557*10^3
Логистика 764432 168894,4 -1,595*10^5
Судоремонтная 417589 54678,4 1,239*10^4
Пищевая 496567 44477,6 3,563*10^4
Машино и приборо-строение 534567 -16855,2 3,836*10^4

В модели Неймана представлены n продуктов и m способов их

производства. Каждый j- й способ задается вектор-столбцом затрат продуктов

a j и вектор-столбцом выпусков продуктов b j в расчете на единицу

интенсивности процесса:

(1)

Это означает, что при единичных интенсивностях j -го производственного процесса потребляется вектор продуктов a j и производится продуктов b j . Векторы (1) рассматриваются в натуральных единицах или в постоянных ценах.

Из векторов затрат и выпуска образуются матрицы затрат А и выпусков

В с неотрицательными коэффициентами затрат a ij и выпусков b ij :

Матрицы А и В обладают следующими свойствами:

1) a ij ≥0 ,b ij ≥0,т.е. все элементы матриц неотрицательны;

2) что означает: в каждом из m способов

производства потребляется хотя бы один продукт;

3) что означает: каждый продукт

производится хотя бы одним способом производства;

Таким образом, каждый столбец матрицы А и каждая строка матрицы В

должны иметь по крайней мере один положительный элемент.

Через Х (t ) обозначим вектор-столбец интенсивностей

Тогда AX (t ) – вектор затрат, BX (t ) – вектор выпусков при заданном

векторе Х (t ) интенсивностей процессов.

Модель Неймана является обобщением динамической модели

межотраслевого баланса Леонтьева, поскольку допускает производство одного продукта несколькими способами производства, и совпадает с ней, если В = Е.

В модели Неймана имеют место следующие соотношения:

(2)

Соотношения (2) означают, что при производстве продукции в году

(t + 1) расходуется продукция, произведенная в году t.

Вектор p (t )=(p 1 (t ), p 2 (t ),..., p n (t ))≥0 называется вектором цен

продуктов, произведенных в году t , если он удовлетворяет следующим соотношениям:

(3)

Если коэффициенты матриц А и В – стоимостные величины в постоянных ценах, то р (t ) будет вектором индексов цен.

Первое векторное неравенство в (3) означает, что стоимость выпуска

продукции для каждого технологического способа производства в году t + 1 не может быть больше стоимости затрат в ценах года t.

Из (2) и (3) следует, что имеют место следующие соотношения:

(4)

Первое соотношение в (4) означает, что цена i -го продукта в году t равна нулю, если его выпуск в году t будет больше его затрат в году (t + 1).

Второе соотношение (4) означает, что j -й технологический процесс в году t не будет применяться (интенсивность равна нулю), если стоимость затрат по нему в году t больше стоимости его выпуска в году (t + 1).

Определение. Векторы Х (t ) и p (t ), t = 1, 2, …, T называются траекторией

сбалансированного роста в модели Неймана, если они удовлетворяют

условиям:

(5)

Здесь λ − темп, ρ − норма процента сбалансированного роста.

Из (5) следует, что в состоянии сбалансированного роста значения компонент вектора Х (t ) пропорционально возрастают, а вектора p (t ) снижаются. При этом имеют место соотношения:

(6)

где Х (0) и р (0) – начальные значения векторов в году t = 0.

Из (5), (6) следует, что на траектории сбалансированного роста должны выполняться соотношения.

(7)

Вопрос о существовании траекторий сбалансированного роста решается

следующими теоремами.

Первая теорема Неймана . Если матрицы А и В удовлетворяют

свойствам 1-3, то система неравенств (7) имеет решение X (t), p (t),λ ,ρ ,

т.е. в модели Неймана существуют траектории сбалансированного роста.

Вторая теорема Неймана. Существует решение X * (t ), p * (t ),λ * ,ρ *

системы (7), у которого будет максимальный темп роста λ * ≥λ и

минимальная норма процента ρ * ≤ ρ по сравнению с другими решениями.

При этом выполняется соотношение:

(8)

Данное решение называется магистралью , или траекторией

максимального сбалансированного роста в модели Неймана.

Модель Неймана является невычислимой, чисто теоретической моделью. Выход к практическим результатам осуществляется через динамическую модель В. Леонтьева, являющуюся частным случаем модели Неймана. Цены, полученные на основе динамического баланса, обладают свойствами цен модели Неймана. Модель Леонтьева использует данные динамического межотраслевого баланса. На основе динамического баланса также возможно построение неймановского луча максимального сбалансированного роста экономики и вычисление цен, соответствующих этому лучу, которые отражают альтернативную стоимость. Отличие динамической межотраслевой модели от модели Неймана состоит в том, что она базируется на предположении, что в каждой отрасли возможен один и только один производственный процесс. Таким образом, выбор решения по каждой отрасли сводится лишь к определению интенсивности производственного способа.

В заключение отметим, что с помощью межотраслевого баланса решают

следующие задачи:

1. По таблице межотраслевого баланса найти матрицу прямых и полных затрат.

2. Задав вектор конечной продукции, определить вектор валовой продукции.

3. Задав вектор валовой продукции, определить вектор конечной продукции.

4. При новых значениях добавленной стоимости найти индексы цен и построить новую таблицу межотраслевого баланса.

5. Найти векторы валового выпуска, добавленной стоимости, затрат,

доли затрат и добавленной стоимости в валовом продукте, межотраслевые

поставки продукции, составить таблицу межотраслевого баланса.

Аналитический метод «затраты-выпуск» наполнил практическим содержанием теорию общего экономического равновесия, он способствовал усовершенствованию математического аппарата. Метод Леонтьева отличает ясность и простота, универсальность и глобальность, другими словами пригодность для экономики отдельных стран и регионов, для мирового хозяйства в целом.

Модель Леонтьева "Затраты-выпуск" строится на основе схемы межотраслевого баланса в предположении о том, что каждая отрасль выпускает один и только свой продукт с использованием продуктов остальных отраслей и посредством линейной технологии. Она помогает анализировать перетоки товаров между отраслями и отвечает на вопрос: можно ли в условиях данной технологии удовлетворить конечный спрос населения на товары?

Магистральная траектория - это луч Неймана. Основным вопросом магистральной теории является анализ близости траекторий оптимизационных моделей к соответствующим магистралям. Оптимальные траектории в динамических моделях Леонтьева и Неймана обладают такими свойствами при выполнении некоторых дополнительных условий.

1. Колемаев В.А. "Экономико-математическое моделирование" ЮНИТИ-ДАНА, 2005 295 с.

2. Поттосина С. А., ЖуравлевВ. А. " Экономико-математические модели и методы" Учебное пособие для студентов экономических специальностей, 2003. – 94 с.

3. Экономико-математические модели и методы / Под общей ред. А.В. Кузнецова. – Мн.: БГЭУ, 2000.

4. http://slovari.yandex.ru/dict/lopatnikov/article/lop/lop-0879.htm

5. http://www.sseu.ru/edumat/v_mat/course2/razd10_2/par10_4k2.htm

2.1. Межотраслевой баланс

Часто при экономическом планировании на уровне регионов или страны в целом возникает необходимость определения объема выпуска товаров, обеспечивающего заданный спрос населения и производственные нужды. Решить эту задачу можно с использованием балансовых моделей производства и распределения продукции. В. основе построения этих моделей лежит балансовый метод, т. е. метод взаимного сопоставления имеющихся материальных, трудовых и финансовых ресурсов с потребностью в них.

Балансовые методы планирования можно рассматривать на различных уровнях иерархии экономических объектов: предприятиях, объединениях, отраслях, народном хозяйстве в целом. Модель межотраслевого баланса (МОБ) исторически является первой экономико-математической моделью сводного народнохозяйственного планирования. Первые балансы народного хозяйства были разработаны Центральным статистическим управлением СССР в гг. В настоящее время межотраслевые балансы на национальном уровне составляются приблизительно в восьмидесяти странах мира. Также строятся межотраслевые балансы на уровне регионов и крупных городов

Предшественниками МОБ были: экономическая таблица Ф. Кенэ (1758) и схемы общественного воспроизводства К. Маркса (XIX в.). Русский экономист (), изучая межотраслевые связи, впервые использовал для этой цели линейные уравнения и предложил технологические коэффициенты. Автором современной модели межотраслевого баланса (в англоязычных странах он имеет название «input-output analysis») является американский ученый (русский по происхождению) Василий Леонтьев. В 1973 году за разработанные методы экономического анализа (модель “затраты–выпуск ”) ему была присуждена Нобелевская премия.

Эта модель позволяет рассчитывать полные затраты валовой продукции , прямые и косвенные затраты на единицу продукции, а также дает возможность устанавливать четкие количественные соотношения между валовым общественным продуктом, национальным доходом , развитием отдельных отраслей экономики Метод универсален. С его помощью американцы , например, проводили перестройку экономики с военных рельсов на мирные. Он был положен в основу индикативных планов, применяемых в Японии.

Межотраслевой баланс производства и распределения продукции – инструмент анализа и планирования структуры общественного производства, учитывающий комплексные взаимосвязи отраслей производственной сферы. В зависимости от того, в каких единицах измеряются потоки продуктов в балансе, существует различные варианты межотраслевых балансов: в натуральном выражении, в стоимостном, в натурально-стоимостном, в трудовых измерителях . По экономическому содержанию информации балансы можно разделить на плановые и отчетные ; по характеру используемой модели – на статические и динамические .

Рассмотрим фрагмент (три раздела) отчетного межотраслевого баланса (МОБ), в котором потоки продукции измеряются на основе стоимости произведенной продукции в некоторых фиксированных ценах (табл. 1). Основу баланса составляет совокупность отраслей материального производства. В межотраслевом балансе понятие отрасли отличается от общепринятого, здесь используется понятие “чистой” (или технологической), т. е. условной отрасли, объединяющей все производство данного продукта независимо от ведомственной подчиненности предприятий и фирм.

Таблица 1

Фрагмент таблицы межотраслевого баланса

Каждая отрасль дважды фигурирует в балансе: как производящая и как потребляющая. Отрасли как производителю продукции соответствует определенная строка таблицы, а как потребителю продукции – определенный столбец . Так как отрасли являются чистыми, индекс отрасли можно отождествить как с видом товара, так и с технологическим процессом..

В первом разделе содержится информация о межотраслевых связях. Величины находящиеся на пересечении отраслей (т. е. строк и столбцов таблицы) нужно понимать как стоимость средств производства, произведенных в -ой отрасли и потребляемых в качестве материальных затрат в -ой отрасли (межотраслевые поставки продукции, обусловленные производственной деятельностью отраслей). .

Таким образом, каждая -ая строка первого раздела показывает распределение продукции –ой отрасли между другими отраслями народного хозяйства. – производственное потребление продукции -ой отрасли экономической системой (промежуточный продукт. –ой отрасли).

В столбцах первого раздела баланса отражается структура материальных затрат каждой отрасли. – суммарные производственные затраты -ой отрасли в отчетном периоде. – суммарные производственные затраты всех отраслей или суммарный промежуточный продукт народного хозяйства.

Таким образом, первый раздел МБ показывает общую картину производственных затрат и распределения продукции отраслей на производственные цели. Данные I квадранта играют решающую роль в анализе структуры материальных затрат отраслей, пропорций и производственных связей между отраслями, потоков системе материально-технического снабжения.

Во втором разделе содержатся величины – значения конечного продукта и – значения валового продукта ().

Конечный продукт – это продукция отраслей материального производства, поступающая на цели личного и общественного непроизводственного потребления, накопление и возмещение выбытия основных фондов, прирост запасов, затраты на просвещение, здравоохранение, экспорт и т. д.).

– суммарный конечный продукт экономической системы или национальный доход, а столбец характеризует материальную структуру национального дохода.

В развернутых схемах баланса конечный продукт каждой отрасли показывают дифференцировано по направлениям использования: для потребления, инвестиции, прирост запасов и резервов, экспорт и прочие расходы.

Первый и второй раздел межотраслевого баланса называют таблицей "затраты-выпуск". По строкам этой таблицы строится следующее балансовое соотношение :

, (), (2.1),

т. е. валовой продукт каждой отрасли равен сумме конечного и промежуточного продуктов.

В третьем разделе МБ отражается стоимостная структура валового продукта отраслей. В нашей таблице третий раздел представлен 2-я строками. В первой стоят величины , каждая из которых означает добавленную стоимость (условно-чистую продукцию) отрасли, а во второй––валовой продукт. Условно–чистая продукция определяется как разность между валовой продукцией и суммарными производственными затратами:

(2.2)

Добавленная стоимость - это та часть стоимости продукта, которая создается в данной отрасли, Она отражает прибыль, заработную плату , амортизационные отчисления, налоги и прочие издержки, понесенные каждым объектом (отраслью) в дополнение к платежам за ресурсы, поступившие из других отраслей.

Обычно в развернутых МБ условно-чистую продукцию подразделяют на амортизационные отчисления и чистую продукцию.

Из соотношений (2.1) и (2.2) следует

(2.3),

откуда получаем: (2.4)

Это соотношение показывает, что суммарный конечный продукт экономической системы (национальный доход) равен суммарной условно–чистой продукции. Таким образом, третий раздел также характеризует национальный доход, но со стороны его стоимостного состава как сумму оплаты труда и чистого дохода всех отраслей материального производства, а величины показывают вклад отрасли в национальный доход.

Данные третьего раздела необходимы для анализа соотношений между вновь созданной и перенесенной стоимостью, между величиной необходимого и прибавочного продукта в целом по материальному производству и в отраслевом разрезе. В целом же уравнение (2.4) показывает, что в межотраслевом балансе соблюдается важнейший принцип единства материально-вещественного и стоимостного состава национального дохода.

Следует отметить, что баланс в натуральных измерителях обычно содержит только показатели I и II разделов схемы межотраслевого баланса. Он разрабатывается по важнейшим видам продукции и обычно не охватывает всего общественного производства.

Подчеркнем, что рассмотренный нами отчетный МБ – это пока не модель, а лишь способ представления статистической информации об экономике страны. Он строится на основе агрегирования результатов отдельных предприятий. Кроме отчетных МБ разрабатываются плановые МБ. Для их построения необходимо использовать межотраслевые балансовые модели.

2.2. Статическая балансовая модель производства.

Балансовая модель строится на следующих предположениях о свойствах экономического объекта:

· Экономическая система состоит из нескольких экономических объектов. Количество выпускаемой каждым объектом продукции может быть охарактеризовано одним числом, в качестве которого чаще всего рассматривается валовой выпуск в некоторых фиксированных ценах.

· Выпускаемая каждым объектом продукция частично потребляется другими объектами системы, а частично поступает вовне в качестве конечного продукта данной системы, т. е. выполняется соотношение

(2.5)

· Цель системы заключается в производстве заданного количества конечного продукта.

· Свойство комплектности потребления: для выпуска заданного количества продукта объект должен получать строго определенное количество других продуктов.

· Свойство линейности потребления: увеличение выпуска продукции в некоторое число раз требует увеличения потребления объектом всех других продуктов в то же самое число раз.

Очевидно, что сформулированные предположения лишь приближенно отражают реальную экономическую ситуацию, к примеру, предположение о комплектности потребления, которое предполагает, что технология производства в каждом объекте остается неизменной в течение рассматриваемого промежутка времени, причем в каждой отрасли имеется единственная технология производства, не допускается замещение одного ресурса другим.

В реальном производстве один и тот же продукт в зависимости от применяемой технологии может требовать различное количество инградиентов, а в модели предполагается, что продукт производится некоторым усредненным способом. Несмотря на эти упрощения, балансовая модель является удобным инструментом планирования благодаря своей простоте и возможности расчета всех показателей плана.

Построение модели.

Выберем в качестве переменных модели величины валового выпуска - . (). В силу предположения 2 часть этого продукта уходит из системы в качестве конечного продукта . Величины рассматривается в модели как плановое задание, при этом выполняется соотношение (2.5):

()

Свойства линейности и комплектности потребления определяют закономерности преобразования ресурсов в системе, а именно, согласно свойству комплектности для выпуска единицы продукции – ый объект должен использовать другие продукты рассматриваемой экономической системы в определенном соотношении. Пусть `-вектор, определяющий это соотношение, где величины называют технологическими коэффициентами или коэффициентами прямых затрат

– количество продукции - ой отрасли, необходимоe для производства единицы продукции в j-ой отрасли. Величины не зависят от объема производства и являются относительно стабильными величинами во времени.

Матрица, составленная из величин называется матрицей технологических коэффициентов или матрицей прямых затрат

A=

Из экономического смысла величин следует, что все элементы матрицы не отрицательны. Будем это свойство записывать так: . Так как процесс воспроизводства нельзя было бы осуществлять, если бы для собственного производства в отрасли затрачивалось большее количество продукта, чем создавалось, то очевидно, что диагональные элементы матрицы меньше 1: < 1

На основе свойства линейности можно утверждать, что. если –ый объект выпустит не единицу продукции, а , то ему понадобится () единиц продукции -ой отрасли, т. е. межотраслевая поставка продукции из -ой отрасли в -ую равняется

Ошибка! Объект не может быть создан из кодов полей редактирования. (2.6)Ошибка! Объект не может быть создан из кодов полей редактирования.

Подставим (2.6) в (2.5) и получим следующую систему балансовых уравнений:

() (2.7)

Из экономического смысла величины Ошибка! Объект не может быть создан из кодов полей редактирования. (2.8)

Соотношения (2.7) и (2.8) вместе с изложенной интерпретацией коэффициентов , векторов определяют простую балансовую модель Леонтьева.

В матричной форме модель можно записать следующим образом:

(2.9).

В балансовой модели считаются заданными: матрица А и вектор конечной продукции Y. Матрица Х (валовой выпуск) подлежит определению.

При рассмотрении балансовых моделей встает вопрос об определении коэффициентов прямых затрат. (матрицы А). В упрощенной модели предполагается, что коэффициенты прямых затрат в рассматриваемом промежутке времени постоянны и зависят только от сложившейся технологии производства, а это позволяет рассчитать их на основе обработки данных о реальных потоках продукции за прошлый период, представленных в отчетных МБ: (2.10)

2.3. Исследование системы балансовых уравнений

Рассмотрим балансовую модель:

Исследование системы уравнений (2.11) означает, в первую очередь, выяснение условий, гарантирующих существование и единственность неотрицательного решения этой системы. (2.11)– это линейная система из уравнений с переменными. Такие системы имеют единственное решение, если их определитель не равен нулю. Введем единичную матрицу Е и запишем (2.11) в виде:

Таким образом, для того, чтобы системы уравнений (2.11) имела решение необходимо, чтобы определитель матрицы был бы отличен от нуля: (). В этом случае существует матрица обратная к .

Тогда решение системы (2.11) можно определить следующим образом:

Однако, для того, чтобы решение имело экономический смысл, необходима его неотрицательность, т. е. . Заметим, что существование матрицы не обеспечивает неотрицательность получаемого решения. Кроме того, с экономической точки зрения особый интерес представляют системы, имеющие неотрицательное решение при любом задании вектора конечной продукции, т. е. при любых положительных .

Таким образом, основной вопрос, который возникает при исследовании модели Леонтьева состоит в следующем: сможет ли рассматриваемая технология, задаваемая матрицей , обеспечить любой конечный спрос . С математической точки зрения это означает выявление условий, которым должна удовлетворять матрица, чтобы при любом система балансовых уравнений имела неотрицательное решение. Ответ на этот вопрос связан с понятием продуктивности матрицы .

Определение. Матрица называется продуктивной, если существует такой неотрицательный вектор, что

, т. е. (2.15).

Условие (2.15) означает, что продукции производится больше, чем идет на производственное потребление (промежуточный продукт ). Следовательно, каждый объект выпускает некоторое количество конечной продукции. В случае продуктивной матрицы модель (2.11-2.12) также называется продуктивной.

Теорема - 1 . Продуктивность матрицы является необходимым и достаточным условием существования и единственности неотрицательного решения системы балансовых уравнений (2.11).

Теорема - 2 (необходимое и достаточное условие продуктивности). Матрица Ошибка! Объект не может быть создан из кодов полей редактирования. продуктивна тогда и только тогда, когда существует матрица и все ее элементы не отрицательны.

Теорема - 3 (достаточное условие продуктивности)

Матрица продуктивна, если все ее элементы неотрицательны и сумма элементов по каждому столбцу не более единицы ().

Достаточное условие может быть использовано только для матрицы в стоимостных измерителях. Кроме того, следует отметить, что матрица может быть продуктивной и в случае невыполнения этого условия (так как это достаточный, а не необходимый признак).

Итак, для продуктивной матрицы решение системы балансовых уравнений можно записать:

т. е. на основе коэффициентов прямых затрат по заданному конечному продукту сразу можно определить валовые выпуски отраслей. В этом заложена основная идея использования межотраслевых моделей для планирования производства. Из линейности модели Леонтьева следует, что приращение вектора и соответствующее приращение вектора связаны между собой уравнением . Следовательно, матрица позволяет вычислить изменение валового выпуска, вызванное изменением конечного потребления. Поэтому матрицу часто называют матричным мультипликатором или мультипликатором Леонтьева.

2.4. Экономический смысл матрицы

Обозначим через элементы матрицы и выясним их экономический смысл. Рассмотрим частный случай: пусть одну единицу конечной продукции производит некоторая –ая отрасль, а остальные отрасли конечной продукции не производят, т. е.

(2.17)

Если - продуктивна, то , т. е

= (2.18)

Из равенства векторов в (2.18)следует, что () (2.19).

Соотношения (2.19) раскрывают экономический смысл элементов матрицы :

здесь – валовое количество продукции, которое должна изготовить –ая отрасль, чтобы –ая отрасль выпустила одну единицу конечной продукции. Поэтому элементы называют коэффициентами полных материальных затрат, а матрицу - матрицей полных материальных затрат (материальные затраты в данном случае – это продукция, изготовленная объектами рассматриваемой экономической системы).

Коэффициенты прямых затрат характеризуют непосредственные затраты продукции -ой отрасли на производство единицы продукции - ой отрасли. Однако, кроме прямых затрат существуют косвенные или опосредованные затраты. Например, рассмотрим формирование затрат электроэнергии при производстве автомобилей . Ограничимся следующей технологической цепочкой:

автомобиль -- кузов - листовая сталь - прокат .

Затраты электроэнергии непосредственно при сборке автомобиля (стадия 1) будут прямыми затратами. Но при изготовлении кузова из листовой стали и стали из проката также требуется электроэнергия. Эти затраты прямые при изготовлении кузова и листовой стали являются косвенными (опосредованными) затратами соответственно первого и второго порядка при изготовлении автомобиля.

Введение косвенных затрат позволяет дать следующее определение коэффициентов полных затрат:

коэффициентом полных материальных затрат называется общее количество продукции - ой отрасли, необходимое для производства единицы продукции -ой отрасли как напрямую, так и опосредованно с учетом всех промежуточных продуктов на всех стадиях производства, необходимых при изготовлении продукции -ой отрасли.

Для производства единицы продукции отрасли необходимо затратить напрямую набор продуктов , который формально описывается –ым столбцом матрицы . В свою очередь для производства набора продуктов необходима также продукция отраслей экономической. Этот набор продуктов мы обозначим через . В силу свойства линейности = . Элементы вектора называются коэффициентами косвенных затрат первого порядка для производства единицы продукта - ой отрасли. Матрица, составленная из столбцов () называется матрицей косвенных затрат первого порядка. Очевидно, что

Косвенными затратами второго порядка называются затраты, необходимые для обеспечения косвенных затрат первого порядка, т. е. или в матричной форме: и т. д..

Полные затраты определяются как сумма прямых и косвенных затрат всех порядков:

Учитывая, что , получаем

Теорема . Если матрица продуктивна, то матрица представима суммой сходящегося степенного матричного ряда:

(доказать самостоятельно!. Доказательство основано на лемме: если матрица A продуктивна, то )

Сопоставление соотношений (2.21) и (2.22) позволяет установить связь между матрицами и полных материальных затрат: Данная связь определяет экономический смысл различия между матрицами и : в отличие от коэффициентов матрицы , учитывающих только полные затраты на производство единицы продукции, диагональные элементы матрицы включают также саму единицу конечной продукции. Знание матрицы полных затрат позволяет провести анализ взаимосвязей конечного и валового продукта, определить полные затраты на выпуск конечного продукта того или иного вида, рассчитать различные варианты плана при разных объемах и структуре конечного потребления.

Определение. Матрицу называют матрицей косвенных материальных затрат. Используя соотношение (2.22) можно записать:

Косвенные затраты высоких порядков весьма малы, поэтому при практических расчетах ими можно пренебречь. Соотношения (2.22) и (2.23) могут быть использованы для нахождения приближенного значения соответствующих матриц. Чем большее число членов выбирается для их расчета, тем они точнее.

2.5. Балансовые модели с факторами производства

Для функционирования экономических объектов необходима не только продукция других объектов этой системы, но и такие факторы производства, как производственные фонды (оборудование, производственные площади, труд и т. д. Кроме того, экономическая система может получать продукцию из других экономических систем. Объемы этих факторов обычно ограничены, что является причиной того, что не всякий вектор конечного продукта может быть произведен экономической системой даже в случае продуктивности матрицы A. Поэтому для определения плана необходимо рассчитать потребность системы в факторах производства. Допустимым планом будет лишь план, при котором эти потребности не превосходят имеющихся объемов факторов.

Потребность системы в факторах производства обозначим , где – потребность в - ом факторе. Потребность может измеряться как в натуральных единицах (часах, кв. м., т., и пр.), так и в денежных единицах . Каждый экономический объект будем характеризовать вектором затрат факторов производства на единицу продукции: , здесь– количество –го фактора, необходимое объекту для выпуска единицы продукции. Величины называют коэффициентами прямых затрат факторов производства, а матрицу , составленную из этих коэффициентов - матрицей прямых затрат факторов производства.

Каждый столбец матрицы = определяет прямые затраты факторов определенной отрасли, а каждая – ая строка описывает потребность системы в - ом факторе производства. Считаем, что для факторов производства выполняются свойства линейности и комплектности потребления. Если – вектор валового выпуска продукции, то суммарная потребность экономической системы в –том факторе: . Это соотношение в матричной форме запишется можно записать:

так как , где .

Матрица . определяет полные затраты факторов производства на единицу продукции. Как уже отмечалось, количество каждого фактора ограничено и задается матрицей . Тогда план по конечной продукции является допустимым, если требуемые для его реализации объемы факторов производства не превышают их наличие, т. е выполняется соотношение:

Запишем балансовую модель с факторами производства:

(2.26)

В отличие от простой балансовой модели эта модель даже в случае продуктивной матрицы разрешима не для любого , а только для , удовлетворяющего соотношению (2.25), т. е. в данном случае уже нельзя говорить об удовлетворении любого конечного спроса.

Поэтому прежде чем приступать к решению системы балансовых уравнений необходимо проверить выполнимость условия (2.25) при заданном плане . Если это условие не выполняется, то следует изменить объем выпуска конечного продукта, сохранив его структуру, т. е. все элементы плана должны быть изменены в одно и тоже число раз. Коэффициент масштабирования при этом определяется следующим образом:

2.6. Ценовые балансовые модели

До сих пор наши рассуждения касались лишь технологии производства. Рассмотрим баланс по столбцам и исследуем ценовой аспект балансовых моделей. Запишем балансовые соотношения по столбцам стоимостного МБ:

(2.27)

Здесь – добавленная стоимость.

Предположим, что в будущем году прогнозируется изменение цен в каждой отрасли в раз по отношению к текущему году при тех же натуральных значениях векторов . Величины называются индексами изменения цен.

Введем индексы цен в соотношение (2.27) заменив при этом на . Тогда (2.27) запишется: (2.28)

Разделим (2.28) на валовый выпуск и получим:

, (2.29),

где – доля добавленной стоимости, приходящаяся на единицу –ой продукции.

Ценовая балансовая модель в матричном виде запишется:

(2.30)

Здесь – матрица транспонированная к матрице A технологических коэффициентов, – матрица долей добавленных стоимостей, приходящихся на единицу продукции. В модели заданными считаются и . Рассчитывается матрица индексов изменения цен .

Если предположить, что цены на продукцию отраслей в отчетном периоде равнялись единице, то можно интерпретировать как цену единицы продукции отрасли .

Нетрудно установить соответствие между ценовой моделью и моделью объёмов выпуска, а именно: . Имея в виду эти взаимные соответствия, модель объёмов выпуска и ценовую модель называют двойственными

Для ценовой модели справедливы те же теоретические положения, что и для модели объемов выпуска. В частности, если А продуктивна, то найдется единственное неотрицательное решение модели (2.30):

(2.31).

Можно показать, что ), тогда

В ценовой балансовой модели матрица является мультипликатором распространения изменения доли добавленной стоимости, т. е.

(2.33).

В том случае, когда добавленная стоимость представлена только оплатой труда, индексы цен пропорциональны коэффициентам суммарной потребности в труде независимо от планового задания по конечной продукции, а коэффициент пропорциональности совпадает с коэффициентом оплаты труда , т. е. . Покажем это.

Пусть вектор прямых затрат труда, тогда - заработная плата, при изготовлении единицы - ой продукции. Полагаем, что . Тогда

Следовательно,

2.7. Примеры решения задач

Задача 1. Построить балансовую модель и найти ее решение для заданного плана по конечной продукции . Построить плановый баланс. Как изменится валовый выпуск при увеличении конечного спроса в 1 - ой отрасли на 20 %. Отчетный стоимостной баланс задан в следующей таблице

Межотраслевой баланс (МОБ) представляет собой инструмент анализа и прогнозирования структурных взаимосвязей в экономике. Метод его построения состоит в двойственном рассмотрении различных отраслей и секторов экономики: с одной стороны, как потребляющих продукцию, с другой - как выпускающих те или иные виды товаров и услуг для собственного потребления и нужд других отраслей экономики.

Межотраслевой баланс - это "шахматная таблица" отраслей, в которой по вертикали показываются материальные затраты на производство продукции определенной отрасли хозяйства, по горизонтали - количество продукции, переданное из данной отрасли в другие на производственные нужды (промежуточный продукт), а также конечное потребление продукции отраслью. Используя эти данные, можно определить удельные затраты какого-либо ресурса на выпуск конечного продукта. Для этого выбранный показатель столбца или строки делится на величину валового продукта. Например, разделив величину затрат электроэнергии на объем продукции машиностроения, получим удельное электропотребление машиностроительного производства.

В мировую экономическую мысль эта модель вошла из публикаций Василия Леонтьева, известного американского экономиста русского происхождения. В. Леонтьев создал научно обоснованный метод "затраты-выпуск", который позволяет анализировать межотраслевые связи в национальном хозяйстве и определять возможные направления оптимизации отраслевой структуры. За это научное достижение ему была присуждена Нобелевская премия.

В общем виде модель МОБ Леонтьева имеет следующий вид:

где X- объем производства какой-либо отрасли;

Y - конечный продукт этой отрасли;

А - матрица технологических коэффициентов прямых затрат

aij, которые показывают, сколько продукции отрасли необходимо затратить для производства единицы продукции отрасли.

Данная модель показывает взаимосвязь производства и конечного продукта. Она развертывается в систему уравнений, где отображены различные отрасли со специфическими технологическими коэффициентами.

Применение таблиц "затраты-выпуск" дает возможность проследить, каким образом рост производства какой-либо отрасли вызывает адекватный рост остальных отраслей.

Модель МОБ применяется для специального анализа макроэкономического равновесия трудовых ресурсов общества и объемов выпуска продукта, производства и распределения основных производственных фондов для других целей. Межотраслевой баланс позволяет провести анализ взаимозависимости цен в макроэкономике, оценить материальные и трудовые издержки, определить добавленную стоимость. Метод "затраты - выпуск" предоставляет информацию, которую практически невозможно получить, применяя другие методы и модели макроэкономического анализа.

Однако с точки зрения экономического прогнозирования эта модель имеет существенный недостаток, который усугубляется при прогнозировании динамически развивающегося общества. Модель демонстрирует формулу экономического развития на базе уже сложившихся технологических коэффициентов. При экстенсивном развитии этот вариант возможен, но в условиях интенсификации производства технологические коэффициенты становятся подвижными, поэтому делать прогнозы на основе старых пропорций не вполне обоснованно.

"Межотраслевой баланс" и другие

Межотраслевой баланс (МОБ , модель «затраты–выпуск» , метод «затраты–выпуск» ) - экономико-математическая балансовая модель, характеризующая межотраслевые производственные взаимосвязи в экономике страны. Характеризует связи между выпуском продукции в одной отрасли и затратами, расходованием продукции всех участвующих отраслей, необходимым для обеспечения этого выпуска. Межотраслевой баланс составляется в денежной и натуральной формах.

Межотраслевой баланс представлен в виде системы линейных уравнений . Межотраслевой баланс (МОБ) представляет собой таблицу, в которой отражен процесс формирования и использования совокупного общественного продукта в отраслевом разрезе. Таблица показывает структуру затрат на производство каждого продукта и структуру его распределения в экономике. По столбцам отражается стоимостной состав валового выпуска отраслей экономики по элементам промежуточного потребления и добавленной стоимости. По строкам отражаются направления использования ресурсов каждой отрасли.

В Модели МОБ выделяются четыре квадранта . В первом отражается промежуточное потребление и система производственных связей, во втором - структура конечного использования ВВП , в третьем - стоимостная структура ВВП, а в четвёртом - перераспределение национального дохода.

Энциклопедичный YouTube

  • 1 / 5

    Теоретические основы межотраслевого баланса были разработаны В. В. Леонтьевым в Берлине, русскую версию его статьи под названием «Баланс народного хозяйства СССР » опубликовал журнал «Плановое хозяйство» в № 12 за 1925 год . В своей статье учёный показал, что коэффициенты, выражающие связи между отраслями экономики , достаточно стабильны и их можно прогнозировать .

    В 1930-е годы В. В. Леонтьев применил метод анализа межотраслевых связей с привлечением аппарата линейной алгебры для исследования экономики США . Метод стал известен под названием «затраты - выпуск». Во время Второй мировой войны разработанная Леонтьевым матрица «затраты - выпуск» для экономики Германии служила для выбора целей ВВС США . Аналогичный баланс для СССР, разработанный Леонтьевым, использовался властями США для принятия решения об объёмах и структуре Ленд-лиза .

    Признавая, что по ряду направлений советские межотраслевые исследования занимали достойное место в мировой науке , Леонтьев отчетливо понимал, что теоретические разработки советских ученых не находят практического применения в реальной экономике, где все решения принимались исходя из политической конъюнктуры:

    Западные экономисты часто пытались раскрыть «принцип» советского метода планирования. Они так и не добились успеха, так как до сих пор такого метода вообще не существует .

    Математическое описание модели Леонтьева

    Пусть y i {\displaystyle y_{i}} - конечный выпуск (для конечного потребления) продукции i-й отрасли, а y = (y 1 , y 2 , . . . , y n) T {\displaystyle y=(y_{1},y_{2},...,y_{n})^{T}} - вектор конечного выпуска (для конечного потребления) всех отраслей i=1..n. Обозначим A {\displaystyle A} - матрица технологических коэффициентов, где элементы матрицы a i j {\displaystyle a_{ij}} - необходимый объем продукции i-ой отрасли для производства единицы продукции j-й отрасли. Пусть также x i {\displaystyle x_{i}} - совокупный выпуск i-й отрасли, соответственно x = (x 1 , x 2 , . . . x n) T {\displaystyle x=(x_{1},x_{2},...x_{n})^{T}} - векторы совокупного выпуска всех отраслей.

    Совокупный выпуск всех отраслей x {\displaystyle x} складывается из двух компонент - выпуска для конечного потребления y {\displaystyle y} , и выпуска для межотраслевого потребления (для обеспечения производства продукции других отраслей). Выпуск для межотраслевого потребления с помощью матрицы технологических коэффициентов определяется как A x {\displaystyle Ax} , соответственно в сумме с конечным потреблением y {\displaystyle y} получим совокупный выпуск x {\displaystyle x} :

    X = A x + y {\displaystyle x=Ax+y}

    X = (I − A) − 1 y {\displaystyle x=(I-A)^{-1}y}

    Матрица (I − A) − 1 {\displaystyle (I-A)^{-1}} - матричный мультипликатор, поскольку фактически полученное выражение справедливо (в силу линейности модели) и для приращений выпусков:

    Δ x = (I − A) − 1 Δ y {\displaystyle \Delta x=(I-A)^{-1}\Delta y}

    Модель называется продуктивной, если все элементы вектора x {\displaystyle x} являются неотрицательными. Достаточным условием продуктивности модели является обратимость и неотрицательная определенность обратимость матрицы I − A {\displaystyle I-A} .

    Двойственная модель Леонтьева

    Двойственной к модели Леонтьева является следующая

    P = A T p + ν {\displaystyle p=A^{T}p+\nu }

    где p {\displaystyle p} - вектор цен отраслей, ν {\displaystyle \nu } - вектор добавленных стоимостей на единицу продукции, A T p {\displaystyle A^{T}p} - вектор затрат отраслей на единицу выпуска. Соответственно, p-A^Tp - вектор чистого дохода на единицу выпуска, который и приравнивается к вектору добавленных стоимостей, соответственно решение двойственной модели

    P = (I − A T) − 1 ν {\displaystyle p=(I-A^{T})^{-1}\nu }

    Пример расчета межотраслевого баланса

    Рассмотрим 2 отрасли промышленности: производство угля и стали. Уголь требуется для производства стали, а некоторое количество стали - в виде инструментов - нужно для добычи угля. Предположим, что условия таковы: для производства 1 т стали нужно 3 т угля, а для 1 т угля - 0,1 т стали.

    Мы хотим, чтобы чистый выпуск угольной промышленности был 200 000 тонн угля, а чёрной металлургии - 50 000 тонн стали. Если они будут производить только 200 000 и 50 000 тонн соответственно, то часть их продукции будет использована ими же и чистый выход будет меньше.

    Действительно, для производства 50 000 тонн стали требуется 3 ⋅ 5 ⋅ 10 4 = 15 ⋅ 10 4 {\displaystyle 3\cdot 5\cdot 10^{4}=15\cdot 10^{4}} тонн угля и чистый выход из 200 000 тонн произведенного угля будет равен: 2 ⋅ 10 5 − 1 , 5 ⋅ 10 5 {\displaystyle 2\cdot 10^{5}-1,5\cdot 10^{5}} = 50 000 тонн угля. Для производства 200 000 тонн угля нужно 0 , 1 ⋅ 2 ⋅ 10 5 {\displaystyle 0,1\cdot 2\cdot 10^{5}} = 20 000 тонн стали и чистый выход из 50 000 тонн произведенной стали будет равен 5 ⋅ 10 4 − 2 ⋅ 10 4 {\displaystyle 5\cdot 10^{4}-2\cdot 10^{4}} = 30 000 тонн стали.

    То есть, для того, чтобы произвести 200 000 тонн угля и 50 000 тонн стали, которые могли бы потребить отрасли не производящие уголь и сталь (чистый выпуск), нужно дополнительно производить уголь и сталь, которые используются для их производства. Обозначим x 1 {\displaystyle x_{1}} - необходимое общее количество угля (валовый выпуск), x 2 {\displaystyle x_{2}} - необходимое общее количество (валовый выпуск) стали. Валовый выпуск каждой продукции является решением системы уравнений:

    { x 1 − 3 x 2 = 2 ⋅ 10 5 − 0 , 1 x 1 + x 2 = 5 ⋅ 10 4 {\displaystyle \left\{{\begin{array}{lcr}x_{1}-3x_{2}&=2\cdot 10^{5}\\-0,1x_{1}+x_{2}&=5\cdot 10^{4}\\\end{array}}\right.}

    Решение: 500 000 т угля и 100 000 т стали. Для систематического решения задач расчета межотраслевого баланса находят, сколько угля и стали требуется для выпуска 1 т каждого продукта.

    { x 1 − 3 x 2 = 1 − 0 , 1 x 1 + x 2 = 0. {\displaystyle \left\{{\begin{array}{lcr}x_{1}-3x_{2}&=1\\-0,1x_{1}+x_{2}&=0.\\\end{array}}\right.}

    X 1 = 1 , 42857 {\displaystyle x_{1}=1,42857} и x 2 = 0 , 14286 {\displaystyle x_{2}=0,14286} . Чтобы найти, сколько угля и стали нужно для чистого выпуска т угля, нужно умножить эти числа на 2 ⋅ 10 5 {\displaystyle 2\cdot 10^{5}} . Получим: (285714 ; 28571) {\displaystyle (285714;28571)} .

    Аналогично составляем уравнения для получения количества угля и стали для выпуска 1 т стали:

    { x 1 − 3 x 2 = 0 − 0 , 1 x 1 + x 2 = 1. {\displaystyle \left\{{\begin{array}{lcr}x_{1}-3x_{2}&=0\\-0,1x_{1}+x_{2}&=1.\\\end{array}}\right.}

    X 1 = 4.28571 {\displaystyle x_{1}=4.28571} и x 2 = 1.42857 {\displaystyle x_{2}=1.42857} . Для чистого выпуска т стали нужно: (214286; 71429).

    Валовый выпуск для производства 2 ⋅ 10 5 {\displaystyle 2\cdot 10^{5}} тонн угля и 5 ⋅ 10 4 {\displaystyle 5\cdot 10^{4}} тонн стали: (285714 + 214286 ; 28571 + 71429) = (500000 ; 100000) {\displaystyle (285714+214286;28571+71429)=(500000;100000)} .

    Динамическая модель МОБ

    Первая в СССР и одна из первых в мире динамическая межотраслевая модель национальной экономики была разработана в Новосибирске доктором экономических наук Н. Ф. Шатиловым . Эта модель и анализ расчетов по ней описаны в его книгах: «Моделирование расширенного воспроизводства» (М., Экономика, 1967), «Анализ зависимостей социалистического расширенного воспроизводства и опыт его моделирования» (Новосибирск: Наука, Сиб.отд., 1974), и в книге «Использование народно-хозяйственных моделей в планировании» (под ред. А. Г. Аганбегяна и К. К. Вальтуха; М.: Экономика, 1974).

    В дальнейшем, под разные конкретные задачи, разрабатывались и другие динамические модели МОБ.

    На основе модели межотраслевого баланса Леонтьева и собственного опыта основатель «Научной школы стратегического планирования» Н.И. Ведута (1913-1998) разработал свою динамическую модель МОБ.

    В его схеме системно согласованы балансы доходов и расходов производителей и конечных потребителей - государства (межгосударственного блока), домашних хозяйств, экспортёров и импортёров (внешнеэкономический баланс).

    Динамическая модель МОБ разработана им методом экономической кибернетики. Она представляет собой систему алгоритмов, эффективно увязывающих задания конечных потребителей с возможностями (материальными, трудовыми и финансовыми) производителей всех форм собственности. На основе модели определяется эффективное распределение государственных производственных инвестиций. Внедрив динамическую модель МОБ, руководство страны получает возможность корректировать в режиме реального времени цели развития в зависимости от уточненных производственных возможностей резидентов и динамики спроса конечных потребителей. Динамическая модель МОБ изложена в книге «Социально эффективная экономика», опубликованной в 1998 году.