Электроэнергетика сообщение по географии. Перспективы развития мировой электроэнергетики. История белорусской электроэнергетики

Электроэнергетика сообщение по географии. Перспективы развития мировой электроэнергетики. История белорусской электроэнергетики

РОССИЙСКАЯ ФЕДЕРАЦИЯ

«УТВЕРЖДАЮ»:

Проректор по учебной работе

_______________________ //

200__г.

ГЕОЛОГИЯ И ГЕОХИМИЯ НЕФТИ И ГАЗА

Учебно-методический комплекс

для студентов специальности 070700 «Теплофизика»

«______»___________200__г. д. г.-м. н., профессор

Рассмотрено на заседании кафедры механики многофазных систем 28.08.2008г. Протокол №1 Соответствует требованиям к содержанию, структуре и оформлению.

Объем 11 стр.

Зав. кафедрой ММС ________________________________________//

«______»___________ 200__ г. д. т.н., профессор

Рассмотрено на заседании УМК физического факультета 06.11.2008г. Протокол № 1

Соответствует ФГОС ВПО и учебному плану образовательной программы .

«СОГЛАСОВАНО»:

Председатель УМК _________________________________________//

«______»_____________200__ г. д. т.н., профессор

«СОГЛАСОВАНО»:

Зав. методическим отделом УМУ_______________________/Ф. И.О./

«______»_____________200__ г.

РОССИЙСКАЯ ФЕДЕРАЦИЯ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение

высшего профессионального образования

ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА МЕХАНИКИ МНОГОФАЗНЫХ СИСТЕМ

ГЕОЛОГИЯ И ГЕОХИМИЯ НЕФТИ И ГАЗА

Учебно-методический комплекс

для студентов 3 курса очной формы обучения

специальности 070700 «Теплофизика»

Издательство

Тюменского государственного университета

В результате изучения курса «Геология и геохимия нефти и газа» студент должен знать: стратиграфический разрез осадочного чехла юрско-мелового возраста Тюменской области ; состав и свойства нафтидов; условия образования нефтегазогенерирующих пород и возможности генерации ими углеводородных флюидов различного фазового состояния и состава; уметь правильно использовать знания и навыки построения геологических, геохимических и др. карт и разрезов для целей открытия месторождений углеводородного сырья. Программа разработана для дневной формы обучения.

Общий объем курса 45 часов, в том числе лекций -34 часа, индивидуальной и самостоятельной работы студентов – 11 часов.

Программа составлена в соответствии с требованиями Государственных образовательных стандартов высшего профессионального образования РФ. Дисциплина «Геология и геохимия нефти и газа» читается в 6 семестре.

2. Тематический план дисциплины «Основы геологии и геохимии нефти и газа»

Наименование темы

Лекции (кол-во часов)

Индивид. и сам. работа (кол-во часов)

Формы контроля

Западно-Сибирский нефтегазоносный бассейн; его характеристика и районирование.

Горючие ископаемые - нефть, газ, конденсат.

Литогенез, его стадии.

Природный резервуар. Коллекторы. Флюидоупоры. Ловушка. Залежь. Месторождение.

Физические поля: температура, давление.

Подземные воды.

Контрольная работа

Генерация УВ и формирование залежей углеводородного сырья.

Минерально-сырьевые ресурсы Тюменской области и месторождения строительных материалов .

Тема 1. Западно-Сибирский нефтегазоносный бассейн; его характеристика и районирование.

Западно-Сибирский топливно-энергетический комплекс. Сейсморазведка. Поиск и разведка месторождений углеводородного сырья. Геофизическое исследование скважин. Нефтегазоносный бассейн. Разработка и эксплуатация месторождений нефти, газа, конденсата. Промышленная переработка нафтидов. Представление о стратиграфии мезозойско-кайнозойского осадочного чехла Западно-Сибирского нефтегазоносного бассейна. Индексация продуктивных пластов. - 4 ч.

Тема 2. Горючие ископаемые - нефть, газ, конденсат.

Нафтиды, ценные полезные ископаемые. Геохимия нефти. Элементный, групповой, фракционный состав нефти. Основные физико-химические характеристики: плотность, вязкость, электропроводность , оптическая активность и др. Природный газ, состав. Основные физико-химические характеристики. Формы существования природных газов в природе: свободные, водорастворенные, попутные. Газогидраты. Конденсаты. Состав. Основные физико-химические характеристики. Особенности геохимии конденсатов. Принцип ретроградной конденсации. Первичные и вторичные конденсаты и закономерности распространения в вертикальном разрезе осадочных отложений мезозойского чехла Западно-Сибирского нефтегазоносного бассейна. – 4 ч.

Седиментогенез. Рассеянное органическое вещество. Его типы. Условия накопления исходного рассеянного ОВ. Битумоид, битумоидный коэффициент. Диагенез. Основные продукты преобразования РОВ на стадии диагенеза. Биопредшественники углеводородов. Катагенез. Продукты катагенетического преобразования рассеянного органического вещества. – 4 ч.

Классификация. Породы-коллекторы нефти и газа. Классификация. Основные фильтрационно-емкостные свойства пород-коллекторов: пористость, проницаемость. Лабораторные методы их определения. Остаточная водонасыщенность. Коэффициенты нефте-, газо - и водонасыщенности. Непроницаемые породы - флюидоупоры (покрышки). Нетрадиционные коллекторы . Ловушки нефти и газа. Основные типы ловушек. Классификация. Структурные и неструктурные ловушки. Принципы графического изображения ловушек. Залежь углеводородов. Элементы пластово-сводовой залежи. Водонефтяной, газонефтяной, газоводяной контакты. Построение структурной карты. Месторождение нефти, газа, конденсата. Классификации месторождений по основным признакам. Типизация месторождений нефти и газа по запасам. Построение геологического разреза месторождения. – 8 ч.

Геотермический режим Западно-Сибирской плиты. Распределение температур в разрезе и на площади осадочного чехла Западно-Сибирского нефтегазоносного бассейна. Нестационарность геотемпературного поля Западно-Сибирского НГБ и ее причины. Геодинамика литосферы. Давление. Пластовое, горное, поровое давление. Понятие о приведенном давлении. Залежи с нормальным и аномальным (высокое и низкое) давлением. Причины формирования аномальных давлений. Особенности поля давлений мезозойско-кайнозойского осадочного чехла Западно-Сибирского НГБ. – 4 ч.

Тема 6. Подземные воды.

Происхождение. Состав. Классификация подземных вод нефтегазоносных бассейнов. Растворимость углеводородов различного фазового состояния в подземных водах. Возрожденные (элизионные) воды. Воды различных этапов литогенеза. – 2 ч.

Тема 7. Генерация УВ и формирование залежей углеводородного сырья. Миграция флюидов в литосфере. Первичная, вторичная, третичная миграция углеводородов, их формы и движущие силы. Принцип дифференциального улавливания компонентов природных углеводородных систем на путях миграции и аккумуляции. Межфазовые взаимодействия в пористой среде на границе раздела фаз: а) пластовая вода - скелет коллектора; б) пластовая нефть - скелет коллектора; в) скелет коллектора - пластовая вода - пластовая нефть. Адсорбция электролитов и неэлектролитов в пористой среде. Происхождение нефти и газа. Органическая теория происхождения нефти. Гипотеза неорганического происхождения нефти. Генезис углеводородных и неуглеводородных компонентов природных газов. Современная модель нефтегазообразования и формирования залежей нефти. Стадийность генерации углеводородов различного состава и фазового состояния. Вертикальная геохимическая зональность в распределении углеводородов различного фазового состояния по разрезу осадочного чехла. Нефтегазогеологическое районирование ЗСНГБ. - 6 ч.

Тема 8. Минерально-сырьевые ресурсы Тюменской области и месторождения строительных материалов.

Особенности геологического строения приповерхностных отложений и закономерности размещения в них полезных ископаемых (строительные пески, глины, гравий). – 2 ч.

4. Самостоятельная работа студентов.

Тема 3. Литогенез, его стадии.

Построение литологических полосок на примере геологических разрезов конкретных месторождений углеводородного сырья Тюменской области. Построение отложений осадочного чехла и выделение продуктивных пластов и горизонтов.

Тема 4. Природный резервуар. Коллекторы. Флюидоупоры. Ловушка. Залежь. Месторождение.

Построение карт, отображающих различные параметры залежей нефти, газа и конденсата.

Тема 5. Физические поля: температура, давление.

Выделение на картах геотемпературного поля и давлений участков распространения нефтепродуцирующих толщ, генерирующих углеводороды.

5. Контрольные вопросы.

1. Нефть, газ, конденсат - нафтиды. Общая характеристика углеводородных флюидов.

2. Химический состав и физические свойства нефти.

3. Химический состав и физические свойства природного газа.

4. Химический состав и физические свойства конденсата.

5. Природный резервуар. Порода - коллектор. Состав и коллекторские свойства горных пород.

6. Пористость: абсолютная, открытая, эффективная. Методы определения.

7. Проницаемость: абсолютная, диэлектрическая, фазовая, фазовая относительная.

8. Гранулометрический состав пород.

9. Неоднородность продуктивных пород.

10. Нефте - и газонасыщенность горных пород.

11. Подземные воды. Химический состав и физические свойства. Происхождение. Классификация.

12. Воды нефтяных и газовых месторождений.

13. Давление в нефтяных и газовых месторождениях.

14. Фазовые превращения в газоконденсатных залежах.

15. Температура в осадочном чехле. Тепловой поток. Геотермическая ступень. Геотермический градиент. Формирование геотемпературного поля в нефтегазоносных бассейнах.

16. Геотермический режим нефтегазоносных пластов.

17. Нефтеотдача и газоотдача пластов.

18. Химический состав и физические свойства газогидратов.

19. Молекулярно-поверхностные свойства системы: нефть - газ - вода - порода.

20. Взаимодействие в пористой среде на границе раздела фаз: пластовая вода - скелет горной породы.

21. Межфазовое взаимодействие на границе раздела фаз: пластовая нефть - скелет горной породы.

22. Явления, возникающие на контакте фаз: скелет коллектора - пластовая вода - пластовая нефть в пористой среде.

23. Адсорбция неэлектролитов в пористых средах.

24. Адсорбция электролитов в пористых средах.

25. Современные представления о генерации углеводородов и формировании их залежей.

26. Стадийность генерации углеводородов различного состава и фазового состояния.

27. Вертикальная геохимическая зональность.

28. Нефтегазогеологическое районирование.

30. Месторождения строительных материалов в Тюменской области.

31. Закономерности размещения полезных ископаемых в приповерхностных отложениях Уральского Федерального округа.

6. Перечень основной и дополнительной литературы.

Основная литература

1. , и др. Геология и геохимия нефти и газа. М.: Недра, 1982.

2. Вендельштейн разрезов скважин. методом потенциалов собственной поляризации. М.: Недра, 1966.

3. Геофизические методы исследования скважин. Справочник геофизика. М.: Недра, 1983.

4. Кобрамов свойства горных пород. М.: Гостехиздат, 1962.

5. Дахитов и магнитные методы исследования скважин. М.: Недра, 1980.

Дополнительная литература

1. Гужин -гамма метод исследования нефтяных скважин. М.: Недра, 1975.

2. , Кузнецов метод исследования скважин. М.: Недра, 1978.

II. Методические указания по Геологии и геохимии нефти и газа. ТюмГУ, 2008, 7с. (Электронный вариант).

III. Дидактические материалы для самоконтроля, текущего контроля знаний и

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОЛОГО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ГИДРОГЕОЛОГИИ, ИНЖЕНЕРНОЙ И НЕФТЕГАЗОВОЙ ГЕОЛОГИИ В.В. ДОЦЕНКО ГЕОХИМИЯ ГАЗА. ПРОИСХОЖДЕНИЕ НЕФТИ И ГАЗА Под редакцией доктора геолого-минералогических наук, профессора А.Н. Резникова Ростов-на-Дону 2001 2 Доценко В.В. Геохимия газа. Происхождение нефти и газа: Учебное пособие / Под ред. А.Н. Резникова. – Ростов-на-Дону: Изд-во Ростовского университета, 2001. – 39 с. Печатается по решению кафедры гидрогеологии, инженерной и нефте- газовой геологии (протокол № 11 от 6 июля 2001 г.). В учебном пособии изложены две темы дисциплины «Геология и гео- химия нефти и газа», в которых рассмотрены вопросы геохимии газа и про- исхождения нефти и газа. Данное пособие является логическим продолжени- ем учебного пособия: «Классификация каустобиолитов и геохимия нефти». Для студентов очной и заочной форм обучения по специальностям: 08.05.00 – «Геология нефти и газа», 01.11.00 – «Геология» и 01.14.00 – «Гид- рогеология и инженерная геология. Рецензенты: доктор геолого-минералогических наук, профессор А.А. Тимофеев (ВНИГРИуголь), кандидат геолого-минералогических наук, доцент В.С. Назаренко (РГУ) 3 ОГЛАВЛЕНИЕ Глава 1. Геохимия газа 4 1.1. Условия нахождения, состав и генетические типы природных газов 4 1.2. Основные свойства природных газов 5 1.3. Классификация природных газов 8 1.4. Газы подземных вод 12 1.5. Состав и формы нахождения природных горючих газов в недрах 15 1.6. Формирование химического состава газов в газовых и нефтяных залежах 16 1.7. Газоконденсатные системы 19 1.8. Газовые гидраты 20 Глава 2. Происхождение нефти и природного горючего газа 23 2.1. Сущность и практическое значение проблемы происхождения нефти и газа 23 2.2. Гипотезы неорганического происхождения нефти 23 2.3. Развитие теории органического происхождения нефти и газа 26 2.4. Основные положения и факты органической теории происхождения нефти и газа 28 2.5. Современные представления об образовании нефти и газа 29 Литература 38 4 Глава 1 ГЕОХИМИЯ ГАЗА 1.1. УСЛОВИЯ НАХОЖДЕНИЯ, СОСТАВ И ГЕНЕТИЧЕСКИЕ ТИПЫ ПРИРОДНЫХ ГАЗОВ Природные газы – это смеси веществ, составляющие атмосферу Земли, а также газообразные смеси, выделяющиеся из состава природных систем иного аг- регатного состояния при нормальных условиях. Природные газы имеют различные условия нахождения, разнообразны по химическому составу, физическому состоянию и происхождению. Условия нахождения. По условиям нахождения природные газы можно раз- делить на три большие группы: 1) свободные газы атмосферы; 2) водорастворен- ные газы гидросферы и 3) газы, заключенные в земной коре. Газы всех трех групп постоянно взаимодействуют. Наиболее разнообразны условия нахождения газов в литосфере, где они су- ществуют в двух основных формах: рассеянной и концентрированной. Газы, рассеянные в горных породах, находятся в следующем физическом со- стоянии: а) растворенном в пластовых водах и микронефти; б) свободном в закры- тых и открытых порах; в) сорбированном минеральной частью пород и рассеянного ОВ; г) окклюдированном (поглощенном) микроскопическими полостями минера- лов. Газы, находящиеся в концентрированной форме существуют в следующем состоянии: а) свободном в пустотном пространстве пород, с образованием залежей; б) растворенном в нефтяных залежах и пластовых водах; в) сорбированном и сво- бодном в угленосных толщах, горючих сланцах и торфах; г) газогидратном; д) в виде газовых струй, выделяющихся из грязевых вулканов, магматических очагов, зон генерации газов и разрушения их залежей. Свободные газы, находящиеся в залежах, являются объектами поисково- разведочных работ и эксплуатации. Состав природных газов. Природные газы литосферы состоят из углеводо- родных и неуглеводородных компонентов. Углеводородную компоненту образуют метан, этана, пропан, бутан и пары жидких УВ (пентана, гексана и гептана). Неуг- леводородная компонента состоит из азота, диоксида углерода, сероводорода и сернистых соединений, гелия, аргона, водорода и паров воды. Данные газы образуют разнообразные смеси: углеводородные, углеводород- но-азотные, углеводородно-углекислые, азотно-углекислые, углеводородно- углекисло-азотные и другие. Генетические типы природных газов. Все природные газы, находящиеся в различных физико-химических состояниях разделяются В.И. Ермаковым и др. на три большие группы: биогенную, литогенную и органолитогенную. Биогенные (биохимические) газы (О2, СО2, СН4, N2, Н2S, NH3, N2О, СО и др.) образуются в результате жизнедеятельности микро- и макроорганизмов в биосфе- ре, включая нелитифицированную часть литосферы, в которой идут диагенетиче- ские процессы. Органолитогенные газы (СН4, тяжелые УВ газы от С2 до С4, СО2, Н2, Н2S и другие) образуются из ОВ на этапах его катагенной и метагенной эволю- 5 ции в результате высокотемпературных реакций. Литогенные газы (СО2, Н2, Н2S, Не, Ar, Xe, SO2, N2, CO, HCl, HF, NH3) появляются в результате физико- химических, в том числе и радиоактивных процессов, происходящих в минеральном скелете водонасыщенных пород на этапах катагенеза, метагенеза и метаморфизма в осадочных толщах и в магматических породах земной коры и мантии. Иногда выделяют генетическую группу космогенных (космических) газов (А.А. Карцев; И.В. Высоцкий). Газы этой группы являются реликтовыми. Они ос- тались от протопланетного облака, из которого образовалась Земля. В настоящее время, из них, очевидно, сохранились только инертные газы. 1.2. ОСНОВНЫЕ СВОЙСТВА ПРИРОДНЫХ ГАЗОВ Физические свойства газа имеют большое значение для процессов миграции углеводородов, их фазовых превращений, формирования и разрушения залежей. Состояние газа определяется тремя параметрами: давлением, температурой и плот- ностью или удельным объемом. В качестве стандартных условий при термодина- мических расчётах принимают температуру равную 0 0С и давление – 0,1 МПа. При прочих расчётах температуру принимают равной 20 0С. Плотность газа (ρ) – это отношение массы сухого воздуха (m) к его объему (v): ρ = m / v (кг/м3, г/см3) или отношение молекулярной массы газа (М) к объёму моля (Vm): ρ = М/Vm = М/22,4. Молекулярная масса вещества – это безразмерная вели- чина. Она определяется отношением массы молекулы данного вещества к 1/12 мас- сы атома изотопа углерода 12С. Количество вещества в граммах, равное молекуляр- ной массе, называется молем. Объем моля (грамм-молекулы) для всех газов по- стоянен и равен при стандартных условиях (давлении 0,1 МПа и температуре 0 0С) 22,412 литра, то есть в 1 м3 любого газа содержится 44,6 моля. Молекулярная масса природного газа равна: М = ∑MiXi, где Мi– молекулярная масса i-го компонента; Хi - объёмное содержание i-го ком- понента в долях единицы. Плотность смеси газов (ρс) определяется по плотности компонентов смеси, взятых при одинаковых условиях: ρс= ∑ρini, где ρi и ni – соответственно плотность и молярная доля i-го компонента смеси. Иногда используется понятие об относительной плотности природного газа. Это безразмерная величина отношения плотности газа к плотности воздуха, кото- рая при атмосферном давлении и температуре 0 0С составляет 1,293 кг. Относи- тельная плотность углекислого газа равна 1,519, сероводорода – 1,176, а относи- тельная плотность природных УВ газов зависит от их состава и меняется для газов С1-С4 в пределах от 0,555 до 2,074. Плотность газа зависит от его химического состава, молекулярной массы, давления и температуры. Она уменьшается с ростом температуры и растет с повы- шением давления и молекулярной массы. Удельным весом газа (γ) называется его вес в объеме 1 м3 или 1 л (кг/м3 или г/л). При 0 0С и атмосферном давлении: γ = ρg , где ρ – плотность газа, g - ускорение силы тяжести. 6 Вязкость газа, в отличие от жидкости растет с уменьшением молекулярной массы и увеличением температуры и давления. Это объясняется увеличением ско- рости движения и силы соударения молекул. Вязкость газа очень низкая, например, вязкость метана при стандартных условиях составляет около 0,01 мПа·с, что в 100 раз ниже вязкости воды. Углеводородные газы при одинаковых условиях имеют меньшую вязкость, чем неуглеводородные. Низкая вязкость газа обусловливает его способность относительно быстро перемещаться в пористых и трещиноватых гор- ных породах при перепаде давления. Растворимость газа в воде и нефти, а также нефти в газе является важней- шим его свойством. В общем, растворимость газа в жидкости при постоянной тем- пературе и давлениях до 5 МПа подчиняется закону Генри: количество раство- ряющегося газа в единице объема растворителя прямо пропорционально давлению и коэффициенту растворимости. При более высоких давлениях и неоднородном со- ставе газа эта зависимость становится сложнее. Р а с т в о р и м о с т ь г а з а в в о д е зависит от его состава, температуры, давления и минерализации воды. Наибольшей растворимостью обладают полярные газы, вступающие в реакцию с водой, а наименьшей – инертные газы, азот и УВ газы. Например, растворимость диоксида углерода при 20 0С и нормальном давле- нии составляет 0,87 см3 в 1 см3 воды. Это в 26 раз выше растворимости метана и в 58 раз больше растворимости азота в этих же условиях. При этом растворимость сероводорода в три раза выше растворимости диоксида углерода. Растворимость УВ газов в воде при прочих равных условиях уменьшается в ряду от С1 до С4. Растворимость газов в воде при повышении температуры вначале падает, достигая минимума у разных газов при 60-100 С 0, а затем быстро увеличивается, особенно при высоких давлениях. С ростом минерализации воды растворимость уменьшается, а с ростом давления повышается. Растворимость воды в УВ газе при давлениях менее 15-20 МПа и температу- рах ниже 50 0С незначительная и составляет сотые доли кг/м3. Р а с т в о р и м о с т ь г а з а в н е ф т и выше, чем в воде и зависит от дав- ления, температуры, состава газа и нефти. Она повышается с ростом давления и уменьшается с увеличением температуры. Растворимость УВ газов растет с повы- шением их молекулярной массы. С увеличением плотности нефти растворимость газа в ней уменьшается. Уменьшается она и с увеличением в составе нефти доли нафтеновых и ареновых УВ. Растворимость газа в нефти измеряется количеством газа в кубических мет- рах на 1 м3 или 1 т товарной (дегазированной) нефти при давлении 0,1 МПа и тем- пературе 20 0С. Такое отношение объема газа к объему или массе добываемой жид- кости называют газовым фактором (ГФ). ГФ варьирует в нефтях в очень широком диапазоне от 5-8 до 550-750 м3/т. Выделение растворенного газа происходит из нефти в обратном порядке от- носительно его растворения, то есть при понижении давления сначала выделяются низкомолекулярные (плохо растворимые) газы, а затем тяжелые (хорошо раство- римые). При резком снижении пластового давления давление насыщения становит- ся временно выше первого, и часть газа выделится из нефти в свободную фазу, в результате в нефти вновь установится равновесие между пластовым давлением и растворимостью газа при данных условиях. 7 ГФ пластовых вод обычно колеблется в пределах от сотых долей единицы до 3 10 м /т и более. При значительном ГФ иногда возможна рентабельная добыча газа из вод. Горные породы имеют ГФ от тысячных долей единицы в магматических, до десятков м3/т в осадочных. Наибольшим ГФ характеризуются ископаемые угли. Исследования последних лет показали относительно большое содержание газа в магматических породах триаса Западной Сибири. Содержание метана в открытых порах породы из керна Тюменской сверхглубокой скважины оказалось равным почти 110 см3/кг или 0,11 м3/т (Т.В. Белоконь, 1998). Содержание рассеянных угле- водородных газов в породах на площадях газовых и нефтегазовых месторождений имеет повышенные значения по всему разрезу. В горизонтах затрудненного водо- обмена они достигают нескольких сотен кубических сантиметров в 1 кг породы. Сорбция (поглощение) газа может происходить в разных средах: в атмосфере (аэрозолями), гидросфере и в литосфере, где она имеет наибольшее значение. Ве- личина сорбции однородного газа пропорциональна его концентрации над поверх- ностью сорбента и обратно пропорциональна температуре. Сорбционная способ- ность пород растет с повышением их удельной поверхности и, особенно, с увели- чением содержания рассеянного ОВ, а также растет с повышением давления до 10- 15 МПа. Высокой сорбционной способностью обладают угли. Влажные породы сорбируют газы значительно хуже, чем сухие. Разные газы сорбируются неодина- ково. Лучшей сорбционной способностью обладают оксид- и диоксид углерода, далее следуют бутан, пропан, этан, азот, метан и водород. Сорбция УВ газов воз- растает с увеличением их молекулярной массы. Диффузия газа или проникновение его молекул в другие вещества возможна практически в любой среде и подчиняется закону Фика: диффузия происходит в направлении убывания концентрации вещества. Она обусловлена тепловым дви- жением молекул и является одним из механизмов переноса вещества, в результате которого происходит естественное выравнивание его концентрации в системе. Скорость диффузии газа зависит от его свойств и концентрации, а также от свойств проницаемой среды: пористости, проницаемости, влагонасыщенности, структуры порового пространства и размера пор. Диффузия растет с повышением температуры и уменьшается с ростом молекулярной массы газа. Диффузия играет существенную роль при эмиграции УВ из нефтепроизводящих пород в коллекторы и обуславливает значительные потери газа из залежей, вплоть до их полного унич- тожения. В вышележащих комплексах пород иногда возможно образование вто- ричных залежей газа за счет диффузии, при наличии надежного флюидоупора. Фильтрация газа – это его движение через пористую среду под влиянием перепада давления. Оно подчиняется закону Дарси, то есть скорость движения газа прямо пропорциональна проницаемости горных пород, через которые происходит фильтрация, и разности квадратов давлений: 2 2 K * S (P2 − P1) Q= ∗ , µh 2 где Q – количество газа, см3, проходящее в единицу времени через породу- коллектор с поперечным сечением S, см2; К – коэффициент проницаемости породы 8 10-12 м2; ё – вязкость газа, Па*с; h – длина пути в направлении движения, см; (Р22 – Р21) – перепад давлений, МПа. Для жидкостей, в отличие от газов вместо разности квадратов давлений в формулу входит перепад давлений. В естественных условиях фильтрация газа происходит вместе с водой, а так- же с нефтью. При этом проявляются ретроградные процессы, усложняющие фильтрацию. Всплывание газа. Масса газа, сжатая до 10 МПа, составляет около 0,1 массы воды такого же объема. Разница плотностей воды и газа или нефти и газа составля- ет подъемную силу. Она служит причиной всплывания свободного газа в порах или трещинах пород, заполненных водой или нефтью. Это свойство газа имеет значе- ние для процессов формирования залежей УВ. Свободный газ при больших объе- мах вытесняет нефть из ловушек. Критическая температура (Ткр). Для каждого газа существует температура, выше которой он не переходит в жидкое состояние, как бы ни повышалось давле- ние. Такая температура называется критической. Критическая температура равна, в 0 С: для метана минус – 82, диоксида углерода – 31,04, этана – 32,21, пропана – 96,63, н-бутана - 151,94. Метан, водород, кислород, азот и благородные газы не могут находиться в жидком состоянии в осадочной оболочке Земли. Легко превращаются в жидкость пропан, бутан, пентан, диоксид углерода и сероводород. Критическое давление (Ркр). Это давление, соответствующее точке критиче- ской температуры или это предельное давление, ниже которого, как бы ни была низка температура, газ не переходит в жидкое состояние. Критическое давление для УВ газов лежит в пределах от 3,6 до 4,9 МПа. Критические параметры, то есть Ткр и Ркр вычисляются как средние арифме- тические из их значений для каждого компонента. Эти средние называют псевдо- критическим давлением и температурой. Гидратообразование. Газы способны создавать с водой при определенных термобарических условиях твердые растворы, которые называются газовыми гид- ратами или кристаллогидратами. 1.3. КЛАССИФИКАЦИЯ ПРИРОДНЫХ ГАЗОВ Вопрос классификации природных газов очень сложен, так как они имеют разнообразный состав, различное происхождение, разные условия нахождения и физическое состояние в природе. Кроме того, газы обладают большой миграцион- ной способностью, создают различные смеси и редко бывают однородными по хи- мическому составу. Одновременно с процессами образования газов идут процессы их разрушения. Например, при действии кислорода на сероводород образуется свободная сера и вода. Первую классификацию природных газов составил В.И. Вернадский (1912), где он указал, что при изучении газов необходимо знать три следующие фактора: форму или условия нахождения газов в природе, источники их происхождения или генезис и химический состав. Согласно этим факторам В.И. Вернадский выделил три группы газов. 9 I. П о ф о р м е н а х о ж д е н и я: А. Свободные газы: 1) атмосферные, 2) газовые скопления, содержащиеся в порах горных пород и окклюзии, 3) газовые струи или вихри (вулканические, тек- тонические, поверхностные), 4) газовые испарения. Б. Жидкие растворы газов: 1) газы океанов и морей, 2) газы озер, прудов и рек, 3) газы различных водных источников (вулканических, тектонических, по- верхностных). В. Твердые растворы газов (газы адсорбированные горными породами и ми- нералами). II. П о и с т о ч н и к а м п р о и с х о ж д е н и я: 1) газы земной поверхно- сти, 2) газы, связанные с высокотемпературными очагами литосферы, 3) газы глу- бинные, проникающие в земную кору из мантии. III. П о с о с т а в у (разделение для тектонических газов): 1) азотные, 2) уг- лекислые, 3) метановые, 4) водородные, 5) сероводородные, 6) водяные пары. Позже, в развитие этой классификации был создан целый ряд классификаци- онных схем природных газов по условиям нахождения и физическому состоянию в природе, по химическому составу, генезису и по их практической ценности и со- держанию полезных компонентов. В отечественной литературе опубликовано бо- лее 20 классификаций природных газов только по химическому составу. Ряд классификационных схем разработали М.И. Суббота и А.Ф. Романюк, которые приведены ниже: Классификация по условиям нахождения газа в п р и р о д е. I. Газы земной поверхности: 1) тропосферы; 2) стратосферы и мезосферы; 3) атмосферных осадков; 4) пещер и карстовых полостей. II. Газы поверхностной гидросферы: 1) океанов и морей; 2) рек, озер и прудов; 3) поверхностных льдов; 4) болот. III. Газы, рассеянные в горных породах: 1) в порах и трещинах осадочных пород; 2) сорбированные породами; 3) поровых растворов; 4) магматогенных пород; 5) газово-жидкие включения в минералах; 6) илов; 7) газогидратов илов; 8) почв. IV. Газы подземной гидросферы: 1) грунтовых вод; 10 2) вод зоны свободного водообмена; 3) вод зоны затрудненного водообмена; 4) мерзлых вод и газогидратов. V. Свободные газы залежей: 1) газовых залежей; 2) газовых шапок нефтяных залежей; 3) газоконденсатных залежей; VI. Газы, растворенные и сорбированные в биогенных ископаемых: 1) растворенные в нефти; 2) сорбированные углями; 3) в горючих сланцах. VII. Газы грязевых вулканов: 1) грязевых извержений; 2) грязевых грифонов. VIII. Газы магматических очагов и поствулканических процессов: 1) вулканических извержений; 2) фумарольные; 3) пневматогенных внедрений; 4) гидротермальных растворов. IX. Газы живых организмов: 1) животных; 2) высших растений; 3) микроорганизмов. К л а с с и ф и к а ц и я п о г е н е з и с у г а з о в. I. Газы биохимического генезиса: 1) микробиологического преобразования ОВ илов и почв – СО2, СН4, N2, CO, N2O, NO2, H2, NH3, H2S и др.; 2) микробиологического преобразования торфа - СО2, N2, СН4, CO, H2S, NH3 и др.; 3) микробиологического преобразования углей - СО2, СН4, N2, CO, H2 и др.; 4) микробиологического преобразования нефти - СН4, СО2 и др.; 5) Фотосинтеза зеленых растений – О2; 6) жизнедеятельности высших растений - СО2, CO, С2Н4, летучих ОВ и др.; 7) жизнедеятельности животных - СО2, CO, H2S, СН4, летучих ОВ и др.; 8) микробиологического разложения растений и животных - СО2, CO, СН4, H2S, N2, NH3 и др. II. Газы химического генезиса: 1) химического генезиса в нормальных условиях земной поверхности - СО2 и др.; 2) термических реакций - СН4, CO, СО2 и др. (150-300 оС); 3) термокаталитических реакций - СН4, CnH2n, H2, CO и др. III. Газы дегазации мантии: 1) дегазации мантии - СН4, H2, NH3, N2, СО2, SO2, H2S, СО, H2O и др.;

Название: Геология и геохимия нефти и газа

Формат: DJVU

Размер: 4,8 Mb

Год издания: 1982

Учебник состоит из двух частей. В первой части рассматриваются теоретические и практические положения геологии нефти и газа. Освещаются вопросы образования, миграции и аккумуляции УВ в земной коре (природные резервуары, породы-коллекторы и покрышки), а также закономерности пространственного размещения их скоплений. Во второй части излагаются вопросы геохимии нефти и газа, закономерности изменения их состава в различных геолого-геохимических условиях.

Для студентов вузов и преподавателей, занимающихся подготовкой специалистов для нефтяной и газовой промышленности и для геологической службы.

Предисловие

ЧАСТЬ ПЕРВАЯ ГЕОЛОГИЯ НЕФТИ И ГАЗА.

Глава I. Политико-экономическое значение нефти и газа в мировом хозяйстве. Л. А. Бакиров, 3. А. Табасаранский

Глава II. Природные горючие ископаемые нефтяного (битумного) ряда. 3. А. Табасаранский

§ 1. Общие сведения

§ 2. Основные физико-химические свойства нефтей и природных углеводородных газов

Глава III. Происхождение нефти и природных углеводородных газов. А. А. Бакиров, 3, А. Табасаранский

§ 1. Научное и практическое значение проблемы происхождения нефти и природного газа

§ 2. Органическое вещество в земной коре и пути преобразования его в нефтяные углеводороды

§ 3. Геолого-геохимические показатели органического происхождения нефти и газа

§ 4. Фации и формации, благоприятные для образования нефтегазоматеринских отложений. А. К. Мальцева

Глава IV. Регионально нефтегазоносные комплексы. А. А. Бакиров

Глава V. Природные резервуары нефти и газа. 3. А. Табасаранский

§ 1. Породы-коллекторы

§ 2. Породы-покрышки (флюидоупоры)

§ 3. Литологические и палеогеографические предпосылки формирования в осадочном чехле пород-коллекторов и пород-покрышек А. К. Мальцева

§ 4. Классификация природных резервуаров нефти и газа

§ 5. Ловушки нефти и газа и их классификация

§ 6. Термобарические условия природных резервуаров нефти и газа

Глава VI. Классификация и основные генетические типы скоплений нефти и газа. А. А. Бакиров

§ 1. Залежи нефти и газа

§ 2. Местоскопления нефти и газа

§ 3. Зоны нефтегазонакопления

Глава VII. Миграция углеводородов в земной коре, формирование и разрушение их скоплений. 3. А. Табасаранский

§ 1. Миграция нефти и газа

§ 2. Формирование скоплений нефти и газа

§ 3. Разрушение залежей нефти и газа

Глава VIII. Закономерности размещения скоплений нефти и газа в земной коре

§ 1. Распределение добычи и разведанных запасов нефти и газа по странам и континентам. А. А. Бакиров} 3. А. Табасаранский

§ 2. Пространственная и глубинная зональности размещения преимущественно нефтяных или газовых скоплений. 3. А. Табасаранский

Глава IX. Нефтегеологическое районирование. А. А. Бакиров

§ 1. Принципы нефтегеологического районирования

§ 2. Классификация и основные типы регионально нефтегазоносных территорий

§ 3. Нефтегеологическое районирование осадочных бассейнов крупных седиментационных циклов (века, эпохи)

Электроэнергетика

Эле́ктроэнерге́тика - отрасль энергетики , включающая в себя производство, передачу и сбыт электроэнергии . Электроэнергетика является наиболее важной отраслью энергетики, что объясняется такими преимуществами электроэнергии перед энергией других видов, как относительная лёгкость передачи на большие расстояния, распределения между потребителями, а также преобразования в другие виды энергии (механическую, тепловую, химическую, световую и др.). Отличительной чертой электрической энергии является практическая одновременность её генерирования и потребления, так как электрический ток распространяется по сетям со скоростью, близкой к скорости света .

Федеральный закон "Об электроэнергетике" даёт следующее определение электроэнергетики:

Электроэнергетика - отрасль экономики Российской Федерации, включающая в себя комплекс экономических отношений, возникающих в процессе производства (в том числе производства в режиме комбинированной выработки электрической и тепловой энергии), передачи электрической энергии, оперативно-диспетчерского управления в электроэнергетике, сбыта и потребления электрической энергии с использованием производственных и иных имущественных объектов (в том числе входящих в Единую энергетическую систему России), принадлежащих на праве собственности или на ином предусмотренном федеральными законами основании субъектам электроэнергетики или иным лицам. Электроэнергетика является основой функционирования экономики и жизнеобеспечения.

Определение электроэнергетики содержится также в ГОСТ 19431-84:

Электроэнергетика - раздел энергетики, обеспечивающий электрификацию страны на основе рационального расширения производства и использования электрической энергии.

История

История российской электроэнергетики

Динамика производства электроэнергии в России в 1992-2008 годах, в млрд кВт∙ч

История российской, да и пожалуй, мировой электроэнергетики, берет начало в 1891 году , когда выдающийся ученый Михаил Осипович Доливо-Добровольский осуществил практическую передачу электрической мощности около 220 кВт на расстояние 175 км. Результирующий КПД линии электропередачи, равный 77,4 %, оказался сенсационно высоким для такой сложной многоэлементной конструкции. Такого высокого КПД удалось достичь благодаря использованию трехфазного напряжения , изобретенного самим учёным.

В дореволюционной России, мощность всех электростанций составляла лишь 1,1 млн кВт, а годовая выработка электроэнергии равнялась 1,9 млрд кВт*ч. После революции, по предложению В. И. Ленина был развернут знаменитый план электрификации России ГОЭЛРО . Он предусматривал возведение 30 электростанций суммарной мощностью 1,5 млн кВт, что и было реализовано к 1931 году, а к 1935 году он был перевыполнен в 3 раза.

История белорусской электроэнергетики

Первые сведения об использовании электрической энергии в Беларуси относятся к концу XIX века. Однако и в начале прошлого столетия энергетическая база Беларуси находилась на очень низком уровне развития, что определяло отсталость товарного производства и социальной сферы: на одного жителя приходилось почти в пять раз меньше промышленной продукции, чем в среднем по Российской империи. Основными источниками освещения в городах и деревнях были керосиновые лампы, свечи, лучины.

Первая электростанция в Минске появилась в 1894 году. Она обладала мощностью 300 л.с. К 1913 году на станции были установлены три дизеля разных фирм и ее мощность достигла 1400 л.с.

В ноябре 1897 года дала первый ток электростанция постоянного тока в городе Витебске.

В 1913 году на территории Беларуси была только одна передовая по техническому оборудованию паротурбинная электростанция, которая принадлежала Добрушской бумажной фабрике.

Развитие энергетического комплекса Республики Беларусь начиналась с реализации плана ГОЭЛРО , ставшего первым после революции перспективным планом развития народного хозяйства советского государства. Решение грандиозной задачи электрификации всей страны дало возможность активизировать работы по восстановлению, расширению и строительству новых электростанций в нашей республике. Если в 1913 году мощность всех электростанций на территории Беларуси составляла всего 5,3 МВт, а годовое производство электроэнергии – 4,2 млн кВт ч, то к концу 30-х годов установленная мощность Белорусской энергосистемы уже достигла 129 МВт при годовой выработке электроэнергии 508 млн кВт ч. .

Начало стремительному становлению отрасли положил ввод в эксплуатацию первой очереди Белорусской ГРЭС мощностью 10 МВт – крупнейшей станции в довоенный период. БелГРЭС дала мощный толчок развитию электрических сетей 35 и 110 кВ. В республике сложился технологически управляемый комплекс: электростанция – электрические сети – потребители электроэнергии. Белорусская энергетическая система была создана де-факто, а 15 мая 1931 года принято решение об организации Районного управления государственных электрических станций и сетей Белорусской ССР – «Белэнерго».

На протяжении многих лет Белорусская ГРЭС оставалась ведущей электростанцией республики. Вместе с тем в 1930-е годы развитие энергетической отрасли идет семимильными шагами – появляются новые ТЭЦ, значительно увеличивается протяженность высоковольтных линий, создается потенциал профессиональных кадров. Однако этот яркий рывок вперед был перечеркнут Великой Отечественной. Война привела к практически полному уничтожению электроэнергетической базы республики. После освобождения Беларуси мощность ее электростанций составляла всего 3,4 МВт.

Энергетикам понадобились без преувеличения героические усилия для того, чтобы восстановить и превысить довоенный уровень установленной мощности электростанций и производства электроэнергии.

В последующие десятилетия отрасль продолжала развиваться, ее структура совершенствовалась, создавались новые энергетические предприятия. В конце 1964 года впервые в Беларуси заработала линия электропередачи 330 кВ – «Минск–Вильнюс», которая интегрировала нашу энергосистему в Объединенную энергосистему Северо-Запада, связанную с Единой энергосистемой Европейской части СССР.

Мощность электростанций за 1960–1970 годы выросла с 756 до 3464 МВт, а производство электроэнергии увеличилось с 2,6 до 14,8 млрд кВт∙ч.

Дальнейшее развитие энергетики страны привело к тому, что в 1975 году мощность электростанций достигла 5487 МВт, производство электроэнергии возросло почти в два раза по сравнению с 1970 годом. В последующий период развитие электроэнергетики замедлилось: по сравнению с 1975 годом мощность электростанций в 1991 году увеличилась немногим больше чем на 11 %, а производство электроэнергии – на 7 %.

В 1960–1990 годы общая протяженность электросетей выросла в 7,3 раза. Длина системообразующих ВЛ 220–750 кВ за 30 лет увеличилась в 16 раз и достигла 5875 км.

На 1 января 2010 года мощность электростанций республики составила 8 386,2 МВт, в том числе по ГПО «Белэнерго» – 7 983,8 МВт. Этой мощности достаточно для полного обеспечения потребности страны в электрической энергии. Вместе с тем ежегодно импортируется от 2,4 до 4,5 млрд. кВт ч из России, Украины, Литвы и Латвии в целях загрузки наиболее эффективных мощностей и с учетом проведения ремонта электростанций. Такие поставки способствуют устойчивости параллельной работы энергосистемы Беларуси с другими энергосистемами и надежного энергоснабжения потребителей. .

Мировое производство электроэнергии

Динамика мирового производства электроэнергии (Год - млрд Квт*час):

  • 1890 - 9
  • 1900 - 15
  • 1914 - 37,5
  • 1950 - 950
  • 1960 - 2300
  • 1970 - 5000
  • 1980 - 8250
  • 1990 - 11800
  • 2000 - 14500
  • 2005 - 18138,3
  • 2007 - 19894,8

Основные технологические процессы в электроэнергетике

Генерация электрической энергии

Генерация электроэнергии - это процесс преобразования различных видов энергии в электрическую на индустриальных объектах, называемых электрическими станциями. В настоящее время существуют следующие виды генерации:

  • Тепловая электроэнергетика . В данном случае в электрическую энергию преобразуется тепловая энергия сгорания органических топлив. К тепловой электроэнергетике относятся тепловые электростанции (ТЭС), которые бывают двух основных видов:
    • Конденсационные (КЭС , также используется старая аббревиатура ГРЭС);
    • Теплофикационные (теплоэлектроцентрали, ТЭЦ). Теплофикацией называется комбинированная выработка электрической и тепловой энергии на одной и той же станции;

КЭС и ТЭЦ имеют схожие технологические процессы. В обоих случаях имеется котёл , в котором сжигается топливо и за счёт выделяемого тепла нагревается пар под давлением. Далее нагретый пар подаётся в паровую турбину , где его тепловая энергия преобразуется в энергию вращения. Вал турбины вращает ротор электрогенератора - таким образом энергия вращения преобразуется в электрическую энергию, которая подаётся в сеть. Принципиальным отличием ТЭЦ от КЭС является то, что часть нагретого в котле пара уходит на нужды теплоснабжения;

  • Ядерная энергетика . К ней относятся атомные электростанции (АЭС). На практике ядерную энергетику часто считают подвидом тепловой электроэнергетики, так как, в целом, принцип выработки электроэнергии на АЭС тот же, что и на ТЭС. Только в данном случае тепловая энергия выделяется не при сжигании топлива, а при делении атомных ядер в ядерном реакторе . Дальше схема производства электроэнергии ничем принципиально не отличается от ТЭС: пар нагревается в реакторе, поступает в паровую турбину и т. д. Из-за некоторых конструктивных особенностей АЭС нерентабельно использовать в комбинированной выработке, хотя отдельные эксперименты в этом направлении проводились;
  • Гидроэнергетика . К ней относятся гидроэлектростанции (ГЭС). В гидроэнергетике в электрическую энергию преобразуется кинетическая энергия течения воды. Для этого при помощи плотин на реках искусственно создаётся перепад уровней водяной поверхности (т. н. верхний и нижний бьеф). Вода под действием силы тяжести переливается из верхнего бьефа в нижний по специальным протокам, в которых расположены водяные турбины, лопасти которых раскручиваются водяным потоком. Турбина же вращает ротор электрогенератора. Особой разновидностью ГЭС являются гидроаккумулирующие станции (ГАЭС). Их нельзя считать генерирующими мощностями в чистом виде, так как они потребляют практически столько же электроэнергии, сколько вырабатывают, однако такие станции очень эффективно справляются с разгрузкой сети в пиковые часы.

В последнее время исследования показали, что мощность морских течений на много порядков превышает мощность всех рек мира. В связи с этим ведётся создание опытных морских гидроэлектростанций.

  • Альтернативная энергетика . К ней относятся способы генерации электроэнергии, имеющие ряд достоинств по сравнению с «традиционными», но по разным причинам не получившие достаточного распространения. Основными видами альтернативной энергетики являются:
    • Ветроэнергетика - использование кинетической энергии ветра для получения электроэнергии;
    • Гелиоэнергетика - получение электрической энергии из энергии солнечных лучей ; Общими недостатками ветро- и гелиоэнергетики являются относительная маломощность генераторов при их дороговизне. Также в обоих случаях обязательно нужны аккумулирующие мощности на ночное (для гелиоэнергетики) и безветренное (для ветроэнергетики) время;
    • Геотермальная энергетика - использование естественного тепла Земли для выработки электрической энергии. По сути геотермальные станции представляют собой обычные ТЭС, на которых источником тепла для нагрева пара является не котёл или ядерный реактор, а подземные источники естественного тепла. Недостатком таких станций является географическая ограниченность их применения: геотермальные станции рентабельно строить только в регионах тектонической активности, то есть, там, где естественные источники тепла наиболее доступны;
    • Водородная энергетика - использование водорода в качестве энергетического топлива имеет большие перспективы: водород имеет очень высокий КПД сгорания, его ресурс практически не ограничен, сжигание водорода абсолютно экологически чисто (продуктом сгорания в атмосфере кислорода является дистиллированная вода). Однако в полной мере удовлетворить потребности человечества водородная энергетика на данный момент не в состоянии из-за дороговизны производства чистого водорода и технических проблем его транспортировки в больших количествах. На самом деле, водород - всего лишь носитель энергии, и никак не снимает проблемы добычи этой энергии.
    • Приливная энергетика использует энергию морских приливов . Распространению этого вида электроэнергетики мешает необходимость совпадения слишком многих факторов при проектировании электростанции: необходимо не просто морское побережье, но такое побережье, на котором приливы были бы достаточно сильны и постоянны. Например, побережье Чёрного моря не годится для строительства приливных электростанций, так как перепады уровня воды на Чёрном море в прилив и отлив минимальны.
    • Волновая энергетика при внимательном рассмотрении может оказаться наиболее перспективной. Волны представляют собой сконцентрированную энергию того же солнечного излучения и ветра. Мощность волнения в разных местах может превышать 100 кВт на погонный метр волнового фронта. Волнение есть практически всегда, даже в штиль ("мёртвая зыбь "). На Чёрном море средняя мощность волнения примерно 15 кВт/м. Северные моря России - до 100 кВт/м. Использование волн может обеспечить энергией морские и прибрежные поселения. Волны могут приводить в движение суда. Мощность средней качки судна в несколько раз превышает мощность его силовой установки. Но пока волновые электростанции не вышли за рамки единичных опытных образцов.

Передача и распределение электрической энергии

Передача электрической энергии от электрических станций до потребителей осуществляется по электрическим сетям . Электросетевое хозяйство - естественно-монопольный сектор электроэнергетики: потребитель может выбирать, у кого покупать электроэнергию (то есть энергосбытовую компанию), энергосбытовая компания может выбирать среди оптовых поставщиков (производителей электроэнергии), однако сеть, по которой поставляется электроэнергия, как правило, одна, и потребитель технически не может выбирать электросетевую компанию. С технической точки зрения, электрическая сеть представляет собой совокупность линий электропередачи (ЛЭП) и трансформаторов , находящихся на подстанциях .

  • Линии электропередачи представляют собой металлический проводник, по которому проходит электрический ток. В настоящее время практически повсеместно используется переменный ток. Электроснабжение в подавляющем большинстве случаев - трёхфазное , поэтому линия электропередачи, как правило, состоит из трёх фаз, каждая из которых может включать в себя несколько проводов. Конструктивно линии электропередачи делятся на воздушные и кабельные .
    • Воздушные линии (ВЛ) подвешены над поверхностью земли на безопасной высоте на специальных сооружениях, называемых опорами. Как правило, провод на воздушной линии не имеет поверхностной изоляции; изоляция имеется в местах крепления к опорам. На воздушных линиях имеются системы грозозащиты . Основным достоинством воздушных линий электропередачи является их относительная дешевизна по сравнению с кабельными. Также гораздо лучше ремонтопригодность (особенно в сравнении с бесколлекторными кабельными линиями): не требуется проводить земляные работы для замены провода, ничем не затруднён визуальный контроль состояния линии. Однако, у воздушных ЛЭП имеется ряд недостатков:
      • широкая полоса отчуждения: в окрестности ЛЭП запрещено ставить какие-либо сооружения и сажать деревья; при прохождении линии через лес, деревья по всей ширине полосы отчуждения вырубаются;
      • незащищённость от внешнего воздействия, например, падения деревьев на линию и воровства проводов; несмотря на устройства грозозащиты, воздушные линии также страдают от ударов молнии. По причине уязвимости, на одной воздушной линии часто оборудуют две цепи: основную и резервную;
      • эстетическая непривлекательность; это одна из причин практически повсеместного перехода на кабельный способ электропередачи в городской черте.
    • Кабельные линии (КЛ) проводятся под землёй. Электрические кабели имеют различную конструкцию, однако можно выявить общие элементы. Сердцевиной кабеля являются три токопроводящие жилы (по числу фаз). Кабели имеют как внешнюю, так и междужильную изоляцию. Обычно в качестве изолятора выступает трансформаторное масло в жидком виде, или промасленная бумага. Токопроводящая сердцевина кабеля, как правило, защищается стальной бронёй. С внешней стороны кабель покрывается битумом. Бывают коллекторные и бесколлекторные кабельные линии. В первом случае кабель прокладывается в подземных бетонных каналах - коллекторах . Через определённые промежутки на линии оборудуются выходы на поверхность в виде люков - для удобства проникновения ремонтных бригад в коллектор. Бесколлекторные кабельные линии прокладываются непосредственно в грунте. Бесколлекторные линии существенно дешевле коллекторных при строительстве, однако их эксплуатация более затратна в связи с недоступностью кабеля. Главным достоинством кабельных линий электропередачи (по сравнению с воздушными) является отсутствие широкой полосы отчуждения. При условии достаточно глубокого заложения, различные сооружения (в том числе жилые) могут строиться непосредственно над коллекторной линией. В случае бесколлекторного заложения строительство возможно в непосредственной близости от линии. Кабельные линии не портят своим видом городской пейзаж, они гораздо лучше воздушных защищены от внешнего воздействия. К недостаткам кабельных линий электропередачи можно отнести высокую стоимость строительства и последующей эксплуатации: даже в случае бесколлекторной укладки сметная стоимость погонного метра кабельной линии в разы выше, чем стоимость воздушной линии того же класса напряжения . Кабельные линии менее доступны для визуального наблюдения их состояния (а в случае бесколлекторной укладки - вообще недоступны), что также является существенным эксплуатационным недостатком.

Потребление электрической энергии

По данным Управления по энергетической информации США (EIA - U.S. Energy Information Administration) в 2008 году мировое потребление электроэнергии составило около 17,4 трлн кВт ч .

Виды деятельности в электроэнергетике

Оперативно-диспетчерское управление

Система оперативно-диспетчерского управления в электроэнергетике включает в себя комплекс мер по централизованному управлению технологическими режимами работы объектов электроэнергетики и энергопринимающих установок потребителей в пределах Единой энергетической системы России и технологически изолированных территориальных электроэнергетических систем, осуществляемому субъектами оперативно-диспетчерского управления, уполномоченными на осуществление указанных мер в порядке, установленном Федеральным законом «Об электроэнергетике» . Оперативное управление в электроэнергетике называют диспетчерским, потому что оно осуществляется специализированными диспетчерскими службами. Диспетчерское управление производится централизованно и непрерывно в течение суток под руководством оперативных руководителей энергосистемы - диспетчеров .

Энергосбыт

См. также

Примечания

Ссылки

Топливная
промышленность :
топливо
Органическое
Газообразное Природный газ Генераторный газ Коксовый газ Доменный газ Продукты перегонки нефти Газ подземной газификации Синтез-газ
Жидкое Нефть Бензин Керосин Соляровое масло Мазут

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Экономическая и социальная география мира

Реферат на тему:

«Характеристика электроэнергетики мира»

КАЗАНЬ 2004г.Содержание

1Введение ………………………………………………………………….. 3

2.1.Значение отрасли в мировом хозяйстве, её отраслевой состав, влияние НТР на её развитие …………………………………………….. 3

2.2.Сырьевые и топливные ресурсы отрасли и их развитие ……………… 5

2.3.Размеры производства продукции с распределением по главным географическим регионам ………………………………………………. 7

2.4.Главные страны производители электроэнергии …………………….. 9

2.5.Главные районы и центры производства электроэнергии ……………. 10

2.6.Природоохранные и экологические проблемы, возникающие в связи с развитием отрасли ……………………………………………………….. 10

2.7.Главные страны (районы) экспорта продукции электроэнергетики …. 11

2.8.Перспектива развития и размещения отрасли …………………………. 11

3.Заключение ………………………………………………………………. 12

4.Список используемой литературы ……………………………………... 13

5.Примечание ………………………………………………………………. 14

6.Лист для рецензии ……………………………………………………….. 15

Введение

В своей работе Основная цель моего реферата рассказать о производстве электроэнергии в мире, рассказать о тепловых станциях, гидроэлектростанциях, а также об атомных электростанциях (АЭС). В реферате приведены современные статистические данные, представлены таблицы, диаграммы, карты.

2.1. Значение отрасли в мировом хозяйстве, её отраслевой состав, влияние НТР на её развитие.

Электроэнергетика входит в состав топливно-экономического комплекса, образуя в нем, как иногда говорят «верхний этаж». Можно сказать, что она относится к так называемым «базовым» отраслям промышленности. Эта её роль объясняется необходимостью электрификации самых различных сфер человеческой деятельности. Развитие электроэнергетики является неприемлемым условием развития других отраслей промышленности и всей экономики государств.

Энергетика включает в себя совокупность отраслей, снабжающих другие отрасли энергоресурсами. В нее входят все топливные отрасли и электроэнергетика, включая разведку, освоение, производство, переработку и транспортировку источников тепловой и электрической энергии, а также самой энергии.

Динамика мирового производства электроэнергетики показана на ри.1 , из которого вытекает, что во второй половине ХХ в. выработка электроэнергии увеличилась почти в 15 раз. На протяжении всего этого времени темпы роста спроса на электроэнергию превышали темпы роста спроса на первичные энергоресурсы.

Рис 1 Динамика мирового производства электроэнергии, млрд. кВт. час

На протяжении всего этого времени темпы роста спроса на электроэнергию превышали темпы роста спроса на первичные энергоресурсы. В первой половине 1990-х гг. ни составляли соответственно 2,5% и 1,55 в год.

Согласно прогнозам, к 2010 году мировое потребление электроэнергии может возрасти до 18-19 трлн. кВт.час, а к 2020г.- до 26-27 трлн. кВт. ч. соответственно будут возрастать и установленные мощности электростанций мира, которые уже в середине 1990-х г превысил и уровень 3 млрд. кВт.

Между тремя основными группами стран выработка электроэнергии распределяется следующим образом: на долю экономически развитых стран приходится 65%, развивающихся - 33% и стран с переходной экономикой - 13%. Предполагают, что доля развивающихся стран в перспективе будет возрастать, и к 2020 г. они обеспечат уже около Ѕ мировой выработки электроэнергии.

В мировом хозяйстве развивающиеся страны по-прежнему выступают главным образом в качестве поставщиков, а развитые - потребителей энергии.

На развитии электроэнергетики оказывают влияние как природные, так и социально-экономические факторы.

Электрическая энергия - универсальный, эффективный технически и экономический вид используемой энергии. Важна также экологическая безопасность использования и передачи по сравнению со всеми видами топлива (учитывая сложности и экологическую составляющую при их транспортировке)

Электрическая энергия вырабатывается на электростанциях разного типа - тепловых (ТЭС), гидравлических (ГЭС), атомных (АЭС), в сумме дающих 99% производства, а также на электростанциях, испльзующих энергию солнца, ветра, приливов и пр. (таб.1).

Таблица 1

Производство электроэнергии в мире и в некоторых странах на электрических станциях разного типа (2001г.)

Страны мира

Производство электроэнергии (млн кВт/ч)

Доля производства электроэнергии (%)

Германия

Великобритания

Бразилия

Мир в целом

Вместе с тем именно рост потребления электроэнергии связан с теми сдвигами, которые формируются в промышленном производстве под воздействием НТП: автоматизацией и механизацией производственных процессов, широким применением электроэнергии в технологических процессах, повышением степени электрификации всех отраслей хозяйства. Также значительно выросло потребление электроэнергии населением в связи с улучшением условий и качества жизни населения, широким распространением радио- и телеаппаратуры, бытовых электроприборов, компьютеров (в том числе использование всемирной компьютерной сети Интернет). С глобальной электрификацией связан неуклонный рост производства электроэнергии на душу населения планеты (с 381 кВт/ч 1950г. до 2400 кВт/ч в 2001г.). В число лидеров по данному показателю входят Норвегия, Канада, Исландия, Швеция, Кувейт, США, Финляндия, Катар, Новая Зеландия, Австралия (т.е. особенно выделяются страны с небольшой численностью населения и в основном экономически развитые)

Увеличение расходов на НИОКР в области энергетики значительно улучшило показатели работы тепловых станций обогащение угля, совершенствование оборудования ТЭС, повышение мощности агрегатов (котлов, турбин, генераторов). Ведутся активные научные исследования в области ядерной энергетики, использования геотермальной и солнечной энергии и т. д.

2.2. Сырьевые и топливные ресурсы отрасли и их развитие.

Для выработки электроэнергии в мире ежегодно потребляется 15 млрд. т условного топлива и объем произведенной электроэнергии растет. О чем наглядно свидетельствует рис. 2

Рис 2 Рост мирового потребления первичных энергоресурсов в ХХв, млрд тонн условного топлива (см. п.5 примечание)

Суммарная мощность электростанций всего мира в конце 90-х годов превышала 2,8млрд кВт, а выработка электроэнергетики вышла на уровень 14 трлн кВт/ч год.

Основную роль в электроснабжении мирового хозяйства выполняют тепловые станции (ТЭС), работающие на минеральном топливе, главным образом на мазуте или газе. Наиболее велика доля в теплоэнергетике таких стран, как ЮАР (почти 100%), Австралия, Китай, Россия, Германия и США и др., обладающих собственными запасами этого ресурса.

Теоретический гидроэнергетический потенциал нашей планеты оценивается в 33-49 трлн кВт/ч, а экономический (который может быть использован при современном развитии техники) в 15 трлн кВт/ч. Однако степень освоенности гидроэнергоресурсов в в разных регионах мира различна (в целом по миру лишь 14%). В Японии гидроресурсы используются на 2/3, в США и Канаде - на 3/5, в Латинской Америке - на 1/10, а в Африке на 1/20 гидроресурсного потенциала. (Таб.2)

Крупнейшие ГЭС мира

Наименование

Мощность (млн кВт)

Бразилия/Парагвай

Венесуэла

Гранд - Кули

Колумбия

Саяно-Шушенская

Красноярская

Ла-Гранд-2

Черчилл-Фолс

Братская

Усть-Илимская

Такантинс

Бразилия

Однако общая структура производства электроэнергии серьезно изменилась с 1950 г. Если раньше применялись лишь тепловые(64,2%) и гидравлические станции (35,8%), то ныне доля ГЭС снизилась до 19% за счет использования ядерной энергетики и других альтернативных источников получения энергии.

В последние десятилетия практического применение в мире получило использование Ядерной энергии. Производство электроэнергии на АЭС возросло в последние 20 лет в 10 раз. Со времени ввода в эксплуатацию первой атомной электростанции (1954год, СССР - г.Обнинск, мощность 5МВт), суммарная мощность АЭС мира превысила 350тыс МВт. (Таб. 3). До конца 80-х годов ядерная энергетика развивалась опережающими темпами по отношению ко всей электроэнергетике, особенно в экономически высокоразвитых странах, дефицитных по другим энергоресурсам. Доля атомных станций в общем производстве электроэнергии мира 1 1970г составляла 1,4%, в1980 г. - 8,4%, а 1993г. уже 17,7%, хотя в последующие годы доля несколько снизилась и стабилизировалась в 2001г. - около 17%). Во много тысяч раз меньшая потребность в топливе (1 кг урана эквивалентен, по заключенной в нём энергии, 3 тыс. т каменного угля) почти освобождает размещение АЭС от влияния Транспортного фактора.

Таблица 3

Действующие реакторы

Строящиеся реакторы

Доля АЭС в общем производстве электроэнергии, %

Число блоков

Мощность, МВт

Число блоков

Мощность, МВт

Великобритания

Республика Корея

К категории нетрадиционных возобновляемых источников энергии (НВИЭ), которые также часто называют альтернативными, принято относить несколько не получивших пока широкого распространения источников, обеспечивающих постоянное возобновление энергии за счет естественных процессов. Это источники связанные с естественными процессами в литосфере (геотермальная энергия), в гидросфере (разные виды энергии мирового океана),в атмосфере (энергия ветра), в биосфере (энергия биомассы)и в космическом пространстве (солнечная энергия)

Среди несомненных достоинств всех видов альтернативных источников энергии обычно отмечают их практическую неисчерпаемость и отсутствие каких-либо вредных воздействий на окружающую среду.

Источники геотермальной энергии отличаются не только неисчерпаемостью, но и довольно широким распространением: ныне они известны более чем в 60 станах мира. Но сам характер использования этих источников многом зависит от природных особенностей. Первая промышленная ГеоТЭС была построена в итальянской провинции Тоскана в 1913году. Число стран, имеющих ГеоТЭС, уже превышает 20.

Использование энергии ветра началось, можно сказать, на самом раннем этапе человеческой истории.

Ветроэнергетические установки Западной Европы обеспечивали бытовые потребности в электроэнергии примерно 3 млн. человек. В рамках ЕС поставлена задача к 2005году увеличить долю ветроэнергетики в производстве электроэнергии до 2% (это позволит закрыть угольные ТЭС мощностью 7 млн кВт), а к 2030г. - до 30%

Хотя солнечную энергию использовали для обогрева домов ещё в древней Греции, зарождение современной гелиоэнергетики произошло только в ХIХ в., а становление в ХХ в.

На мировом «солнечном саммите», проведенном в середине 1990-х гг. была разработана Мировая солнечная программа на 1996 - 2005гг, имеющая глобальные, региональные и национальные разделы.

2.3. Размеры производства продукции с распределением по главным географическим регионам

Мировое производство и потребление топлива и энергии имеют и ярко выраженные географические аспекты, региональные различия. Первая линия таких различий проходит между экономически развитыми и развивающимися странами, вторая - между крупными регионами, третья - между отдельными государствами мира.

Таблица 4

Доля крупных регионов мира в мировом производстве электроэнергии (1950-2000 гг), %

С глобальной электрификацией связан неуклонный рост производства электроэнергии на душу населения планеты (с 381 кВт/ч 1950г. до 2400 кВт/ч в 2001г.). В число лидеров по данному показателю входят Норвегия, Канада, Исландия, Швеция, Кувейт, США, Финляндия, Катар, Новая Зеландия, Австралия (т.е. особенно выделяются страны с небольшой численностью населения и в основном экономически развитые)

Показатель роста производства и потребления электроэнергии точно отражает все особенности развития хозяйства государств и регионов мира. Так, более 3/5 всей электроэнергии вырабатывается в промышленно развитых странах, среди которых по общей её выработке выделяются США, Россия, Япония, Германия, Канада, а также Китай.

Первые десять стран мира по производству электроэнергии на душу населения (тыс. кВт/час,1997год)

2.4. Главная страна производителя электроэнергии

Рост производства электроэнергии был отмечен во всех крупных регионах и странах мира. Однако процесс проходил в них достаточно неравномерно. Уже в 1965 году США превысил общий мировой уровень производства электроэнергии 50-го года (СССР - только в 1975 году преодолел тот же рубеж). А ныне США, оставаясь по-прежнему мировым лидером, производят электроэнергии на уровне почти 4 трлн. кВт/ч (таб.5)

Таблица 5

Первые десять стран мира по производству электроэнергии (1950-2001гг), млрд. кВт/ч

Великобритания

Великобритания

Великобритания

Норвегия

Бразилия

Бразилия

По суммарной мощности электростанций и по производству электроэнергии США занимают первое место в мире. В структуре выработки электроэнергии преобладает производство её на ТЭС, работающих на угле, газе, мазуте (около 70%), остальное производят ГЭС и АЭС (28%). На долю альтернативных источников энергии приходится около 2% (имеется геоТЭС, солнечные и ветровые станции).

По числу энергоблоков работающих АЭС (110) США занимают первое место в мире. АЭС размещаются в основном на востоке страны и ориентированы на крупных потребителей электроэнергии (большинство в пределах 3-х мегалополисов).

Всего в стране действует более тысячи ГЭС, но особенно велико значение гидроэнергетики в штате Вашингтон(в бассейне р. Колумбия), а также в бассейне р. Теннеси. Кроме этого крупные ГЭС построены на реках Колорадо и Ниагара.

Второе место по общей выработки электроэнергии занимает Китай, обогнав Японию и Россию.

Большая её часть производится на ТЭС (3/4), в основном работающих на угле. ГЭС дают ј вырабатываемой электроэнергии. Крупнейшая ГЭС - Гэчжоуба построена на реке Янцзы. Много мелких и мельчайших ГЭС. Предполагается дальнейшее развитие гидроэнергетики в стране. Также действуют свыше 10 приливных электростанций (в т.ч. вторая по мощности в мире). В Лхасе (Тибет) построена геотермальная станция.

2.5 Главные районы и центры производства электроэнергии

Крупные ТЭС строят обычно в районах добычи топлива(угля), либо в местах, удобных для его производства (в портовых городах). Тепловые станции, работающие на мазуте, располагаются в местах размещения нефтеперерабатывающих заводов, работающие на природном газе - вдоль трасс газопроводов.

В настоящее время из большинства действующих ГЭС с мощностью более 1 млн кВт свыше 50% находятся в промышленно развитых странах.

Крупнейшие по мощности из действующих за рубежом ГЭС: бразильско - парагвайская «Итайпу» на р. Паранда - с мощность свыше 12 млн кВт; венесуэльская «Гури» на р. Карони. Крупнейшие ГЭС в России построены на р. Енисей: Красноярская и Саяно-Шушенская (каждая мощностью более 6 млн кВт).

В энергоснабжении многих стран ГЭС играют решающую роль, например, в Норвегии, Австрии, Новой Зеландии, Бразилии, Гондурасе, Гватемале, Танзании, Непале, Шри-Ланке (80-90% общей выработки электроэнергии), а также в Канаде, Швейцарии и других государствах.

Географические аспекты мировой атомной энергетики держатся на трех «китах» - Европе (включая СНГ), Северной Америке и Азиатско - Тихоокеанском регионе.Более 2/3 установленной мощности всех АЭС мира и такая же доля выработки электроэнергии приходится всего на пять ведущих стран - США, Францию, Японию, Германию и Россию.

Двенадцать самых крупных АЭС мира, мощностью 4млн кВт и более каждая находятся в Канаде, во Франции, в Японии, России, на Украине. Самая крупная из них - АЭС Касивадзаки в Японии (8,2 млн кВт).

2.6 Природоохранные и экологические проблемы, возникающие в связи с развитием отрасли

Угольный топливно-энергетический цикл один из экологически наиболее опасных. Поэтому расширяется также использование «альтернативных» источников энергии (солнца, ветра, геотермальных источников, приливов и отливов).

В середине 1980 годов произошла переоценка экологических последствий сооружения АЭС.

Авария американской АЭС «Три Майл Айленд» и в особенности катастрофа на Чернобыльской АЭС в 1986 году, которая затронула 11 областей Украины, Белоруссии и России с населением 17 млн человек и привела к повышению радиации в 20 странах в радиусе 2000 км от Чернобыля, обнажила проблемы стоящие перед ядерной энергетикой такие как большие удельные капитальные затраты, длительные сроки выдачи лицензии на строительство и эксплуатацию АЭС, большая длительность проектирования и сооружения объектов ядерной энергетики и конечно нерешенность ряда крупных технических аспектов безопасности АЭС и обращения с радиоактивными отходами.

Некоторые страны мира законсервировали свои программы развития атомной энергетики. (Австрия, Польша). Некоторые страны решили не демонтировать свои АЭС, но и не строить новые. Сюда попадают такие страны как США и большинство стран зарубежной Европы, где в 1990-е годы фактически не было начато строительство ни одной новой атомной станции. А вот Япония, наоборот, объявила о своем намерении построить более 20 атомных энергоблоков в период до 2010 года. Китай принял новую атомно-энергетическую программу.

2.7 Главные страны (районы) экспорта продукции электроэнергетики

Существенно увеличивается международная торговля энергоносителями. Суммарный её объем оценивается в 4млрд тонн условного топлива. (см. п.5 примечания)

Внешняя торговля электроэнергией охватывает всего 2-3% её мирового производства. Межрегиональной торговли электроэнергией в странах Восточной Европы (в СССР действовала Единая энергетическая система, а с 1960г. была создана Объединенная энергосистема «Мир», в которую входили шесть энергосистем стран-членов СЭВ). Крупнейшими экспортерами электрической энергии в мире в настоящее время являются Франция, Россия, Парагвай, ФРГ, Канада, Швейцария, Украина.

2.8. Перспектива развития и размещения отрасли

Овладение источниками энергии всегда было способом выживания человечества. И ныне её потребление остается одним из важнейших не только экономических, но и социальных показателей, во многом предопределяющих уровень жизни людей. Вот почему иногда кажется, что энергетика управляет миром.

Прогнозы по перспективному развитию энергетики делаются как отдельными специалистами так и Мировым энергетическим советом (МЭС), Международным энергетическим агентством (МЭА) и другими самыми авторитетными организациями. несмотря на то, что прогнозы иногда довольно сильно различаются, можно предположить достижение в 2010г мирового энергопотребления в объеме примерно 15 млрд тут, а в 2015г. - 17 млрд тут. В структуре этого потребления доля угля и нефти предположительно останется относительно стабильной, а доля природного газа возрастет. Все эти расчеты и прогнозы исходят из задачи обеспечить надежность, экономическую приемлемость и экологическую безопасность мирового энергопотребления. Они учитывают также необходимость обеспечения надлежащего качества жизни (исходят из того, что в начале ХХI в. это качество все более будет определяться не столько энергоемкостью производства, сколько эффективностью использования ПЭР для получения необходимых людям продуктов и сохранения среды их обитания.

3. Заключение

Производство электроэнергии в мире ведется на тепловых станциях, использующих традиционные виды топлива (уголь, газ, сланцы, мазут), гидростанциях, а также на АЭС. Оно растет быстрее других секторов топлино-энергетического хозяйства.

По прежнему видную роль в энергетике мира играет гидроэнергия.

На доля атомной энергетики приходится около 1/6 мирового производства электроэнергии. АЭС построены более чем в 30 странах мира.

Наконец, все большую популярность в мире приобретают экологически чистые источники энергии, так называемые альтернативные. Это энергия Солнца, ветра, приливов, глубинное тепло Земли.

География электроэнергии мира отличаются большими контрастами. (см. приложение) на 20%населения развитых стран приходится более 75% всей вырабатываемой электроэнергии. Поэтому некоторые развивающиеся страны, вступившие на путь индустриализации, направляют до 1/3 всех капиталовложений в в электроэнергетику.

Итак, электроэнергетика является жизненно важной отраслью мирового хозяйства. Уровень её развития тесно связан с научно-техническим прогрессом, с качеством жизни населения различных стран и территорий.

4. Список используемой литературы.

1 И.А. Родионова, Т.М. Бунакова «Экономическая география»

2 В.П. Максимовой «Общая характеристика мира. География отраслей мирового хозяйства»

3 «Экономическая география» т.1

4 Ю.Н. Гладких С.Б. Лавров «Экономическая и социальная география мира»: учебник для 10 кл. общеобразовательных учреждений.

5 Атлас и контурные карты составлены и подготовлены к изданию Производственным картосоставительным объединением «Картография»

5. Примечания

1 «Условное топливо» (или «угольный эквивалент»)- топливо, тепловая способность которого условно для расчета принимается равной 7000 ккал/кг. Термин «Условное топливо» используется как эталон для сравнения теплоценности различных видов топлива(измеряется в тоннах условного топлива - тут). При сгорании 1кг уранового топлива - высвобождается энергия, эквивалентная энергии, получаемой при сгорании 3 тыс. тонн угля.

Подобные документы

    Индикаторы для оценки функционирования и основные принципы устойчивого развития в сфере электроэнергетики и использования альтернативных источников энергии. Характеристика развития электроэнергетики в Швеции и Литве, экосертификация электроэнергии.

    практическая работа , добавлен 07.02.2013

    История становления и перспективы электроэнергетической отрасли в Тюменской области. Значение электроэнергетической отрасли в экономике России и Тюменской области. Типы электростанций, их размещение и характеристика. Полуй - река Тобольской губернии.

    реферат , добавлен 04.06.2010

    Становление и развитие электроэнергетики. География энергетических ресурсов России. Единая энергетическая система России. Современное состояние электроэнергетики России и перспективы дальнейшего развития. Электроэнергетика СНГ.

    реферат , добавлен 23.11.2006

    Значение электроэнергетики в экономике Российской Федерации, ее предмет и направления развития, основные проблемы и перспективы. Общая характеристика самых крупных тепловых и атомных, гидравлических электростанций, единой энергосистемы стран СНГ.

    контрольная работа , добавлен 01.03.2011

    История, проблемы и перспективы астраханской энергосистемы. Стратегия развития электроэнергетики Поволжского экономического района. Государственная политика в области энергетики. Программа развития электроэнергетики Астраханской области на 2011-2015гг.

    реферат , добавлен 13.08.2013

    История рождения энергетики. Виды электростанций и их характеристика: тепловая и гидроэлектрическая. Альтернативные источники энергии. Передача электроэнергии и трансформаторы. Особенности использования электроэнергетики в производстве, науке и быту.

    презентация , добавлен 18.01.2011

    Анализ мировых аспектов развития солнечной электроэнергетики. Изучение опыта развитых стран в сфере решения технических и экономических проблем эксплуатации солнечных электрических станций различных видов. Оценка положения дел в энергосистеме Казахстана.

    дипломная работа , добавлен 07.07.2015

    Теоретические основы атомной отрасли, ее сущность и особенности. Тенденции и факторы развития атомной отрасли в Российской Федерации за 2000–2010 года. Анализ современного состояния атомной отрасли и перспективные направления развития отрасли в России.

    курсовая работа , добавлен 24.02.2012

    Современное состояние электроэнергетики Мурманской области. Оценка перспективного спроса на электроэнергию. Потенциальные возможности развития генерирующих мощностей в Кольской энергосистеме. Перспективные балансы электроэнергии Кольской энергосистемы.

    реферат , добавлен 24.07.2012

    История развития электроэнергетики. Система напряжений электрических сетей. Определение рационального напряжения аналитическим расчётом. Необходимые для осуществления электропередачи от источников питания к приёмникам электроэнергии капитальные затраты.