Часы неоновые. Неоновые часы своими руками. Часы на газоразрядных индикаторах

Часы неоновые. Неоновые часы своими руками. Часы на газоразрядных индикаторах

С все более увеличивающимся ростом автоматизации в бытовой сфере появляется необходимость в современных системах и устройствах управления электродвигателями.

Управление и преобразование частоты в небольших по мощности однофазных асинхронных двигателях, запускаемых в работу с помощью конденсаторов, позволяет экономить электроэнергию и активирует режим энергосбережения на новом, прогрессивном уровне.

Принцип работы однофазной асинхронной машины

В основе работы асинхронного двигателя лежит взаимодействие вращающегося магнитного поля статора и токов, наводимых им в роторе двигателя. При разности частоты вращения пульсирующих магнитных полей возникает вращающий момент. Именно этим принципом руководствуются при регулировании скорости вращения асинхронного двигателя с помощью .

Пусковая обмотка занимает в конструкции статора 1/3 пазов, на главную обмотку приходится 23 паза статора.

Ротор однофазного двигателя коротко замкнутый, помещенный в неподвижное магнитное поле статора, начинает вращаться.

Рис.№1 Схематический рисунок двигателя, демонстрирующий принцип работы однофазного асинхронного двигателя.

Основные виды однофазных электроприводов

Кондиционеры воздуха, холодильные компрессоры, электрические вентиляторы, обдувочные агрегаты, водяные, дренажные и фекальные насосы, моечные машины используют в своей конструкции асинхронный трехфазный двигатель.

Все типы частотников преобразуют переменное сетевое напряжение в постоянное напряжение. Служат для формирования однофазного напряжения с регулируемой частотой и заданной амплитудой для управления вращения асинхронных двигателей.

Управление скоростью вращения однофазных двигателей

Существует несколько способов регулирования скорости вращения однофазного двигателя.

  1. Управление скольжением двигателя или изменением напряжения. Способ актуален для агрегатов с вентиляторной нагрузкой, для него рекомендуется использовать двигатели с повышенной мощностью. Недостаток способа – нагрев обмоток двигателя.
  2. Ступенчатое регулирование скорости вращения двигателя с помощью автотрансформатора.

Рис.№2. Схема регулировки с помощью автотрансформатора.

Достоинства схемы – напряжение выхода имеет чистую синусоиду. Способность трансформатора к перегрузкам имеет большой запас по мощности.

Недостатки – автотрансформатор имеет большие габаритные размеры.

Использование тиристорного . Применяются тиристорные ключи, подключенные встречно-параллельно.

Рис. №3.Схема тиристорного регулирования однофазного асинхронного электродвигателя.

При использовании для регулирования скорости вращения однофазных асинхронных двигателей, чтобы избежать негативного влияния индукционной нагрузки производят модификацию схемы. Добавляют LRC-цепи для защиты силовых ключей, для корректировки волны напряжения используют конденсатор, минимальная мощность двигателя ограничивается, так гарантируется старт двигателя. Тиристор должен иметь ток выше тока электродвигателя.

Транзисторный регулятор напряжения

В схеме используется широтно-импульсная модуляция (ШИМ) с применением выходного каскада, построенного на использовании полевых или биполярных IGBT транзисторах.

Рис. №4. Схема использования ШИМ для регулирования однофазного асинхронного электродвигателя.

Частотное регулирование асинхронного однофазного электродвигателя считается основным способом регулирования , мощности, эффективности использования, скорости и показателей энергосбережения.

Рис. №5. Схема управления электродвигателем без исключения из конструкции конденсатора.

Частотный преобразователь: виды, принцип действия, схемы подключения

Разрешает своему владельцу снизить энергопотребление и автоматизировать процессы в управлении оборудованием и производством.

Основные компоненты частотного преобразователя: выпрямитель, конденсатор, IGBT-транзисторы, собранные в выходной каскад.

Благодаря способности управлением параметрами выходной частоты и напряжения достигается хороший энергосберегающий эффект. Энергосбережение выражается в следующем:

  1. В двигателе поддерживается неизменный текущий момент ращения вала. Это обусловлено взаимодействием выходной частоты инверторного преобразователя с частотой вращения двигателя и соответственно, зависимостью напряжения и крутящего момента на валу двигателя. Значит, что преобразователь дает возможность автоматически регулировать напряжение на выходе при обнаружении превышающего норму значения напряжения с определенной рабочей частотой нужно для поддержания требуемого момента. Все инверторные преобразователи с векторным управлением имеют функцию поддержания постоянного вращающего момента на валу.
  2. Частотный преобразователь служит для регулировки действия насосных агрегатов (). При получении сигнала, поступающего с датчика давления, частотник снижает производительность насосной установки. При снижении оборотов вращения двигателя уменьшается потребление выходного напряжения. Так, стандартное потребление воды насосом требует 50Гц промышленной частоты и 400В напряжения. Руководствуясь формулой мощности можно высчитать соотношение потребляемых мощностей.

Уменьшая частоту до 40Гц, уменьшается величина напряжения до 250В, означает, что уменьшается количество оборотов вращения насоса и потребление энергии снижается в 2,56 раз.

Рис. №6. Использование частотного преобразователя Speedrive для регулирования насосных агрегатов по систем CKEA MULTI 35.

Для повышения энергетической эффективности использования необходимо сделать следующее:

  • Частотный преобразователь должен соответствовать параметрам электродвигателя.
  • Частотник подбирается в соответствии с типом рабочего оборудования, для которого он предназначен. Так, частотник для насосов функционирует в соответствии с заложенными в программу параметрами для управления работой насоса.
  • Точные настройки параметров управления в ручном и автоматическом режиме.
  • Частотный преобразователь разрешает использовать режим энергосбережения.
  • Режим векторного регулирования позволяет произвести автоматическую настройку управления двигателем.

Преобразователь частоты однофазный

Компактное устройство преобразования частоты служит для управления однофазными электродвигателями для оборудования бытового предназначения. Большинство частотных преобразователей обладает следующими конструктивными возможностями:

  1. Большинство моделей использует в своей конструкции новейшие технологии векторного управления.
  2. Они обеспечивают улучшенный вращающий момент однофазного двигателя.
  3. Энергосбережение введено в автоматический режим.
  4. Некоторые модели частотных преобразователей используют съемный пульт управления.
  5. Встроенный PLC контроллер (он незаменим для создания устройств сбора и передачи данных, для создания систем телеметрии, объединяет устройства с различными протоколами и интерфейсами связи в общую сеть).
  6. Встроенный ПИД регулятор (контролирует и регулирует температуру, давление и технологические процессы).
  7. Напряжение выхода регулируется в автоматическом режиме.

Рис.№7. Современный преобразователь Optidrive с основными функциональными особенностями.

Важно: Однофазный преобразователь частоты, питаясь от однофазной сети напряжением 220В, выдает три линейных напряжения, величина каждого из них по 220В. То есть, линейное напряжение между 2 фазами находится в прямой зависимости от величины выходного напряжения самого частотника.

Частотный преобразователь не служит для двойного преобразования напряжения, благодаря наличию в конструкции ШИМ-регулятора, он может поднять величину напряжения не более чем на 10%.

Главная задача однофазного преобразователя частоты – обеспечить питание как одно- так и трехфазного электродвигателя. В этом случае ток двигателя будет соответствовать параметрам подключения от трехфазной сети, и оставаться постоянным

Частотное регулирование однофазных асинхронных электродвигателей

Первое на что обращаем внимание при выборе частотника для своего оборудования – это соответствие сетевого напряжения и номинального значения тока нагрузки, на который рассчитан двигатель. Способ подключения выбирается относительно рабочего тока.

Главным в схеме подключения является наличие фазосдвигающего конденсатора, он служит для сдвига напряжения, поступающего на пусковую обмотку. Она служит для пускового включения двигателя, иногда после того, как двигатель заработал, пусковая обмотка вместе с конденсатором отключается, иногда остается включенной.

Схема подключения однофазного двигателя с помощью однофазного частотного преобразователя без использования конденсатора

Выходное линейное напряжение устройства на каждой фазе равно выходному напряжению частотника, то есть на выходе будет три напряжения линии, каждое по 220В. Для запуска может использоваться только пусковая обмотка.

Рис. №8. Схема присоединения однофазного асинхронного двигателя через конденсатор

Фазосдвигающий конденсатор не может обеспечить равномерный фазовый сдвиг в пределах границ частот инвертора. Частотник обеспечит равномерный сдвиг фаз. Для того, чтобы исключить из схемы конденсатор, нужно:

  1. Конденсатор стартера С1 удаляется.
  2. Вывод обмотки двигателя присоединяем к точке выхода напряжения частотника (используется прямая проводка).
  3. Точка А присоединяется к СА; В соединяется с СВ; W соединяется к СС, таким образом электродвигатель присоединится напрямую.
  4. Для включения в обратном направлении (обратная проводка) необходимо В присоединить к СА; А присоединить к СВ; W соединить с СС.

Рис. №9. Схема подключения однофазного асинхронного двигателя без использования конденсатора.

На видео — Частотный преобразователь. в однофазную сеть 220В.

Частотное управление электроприводами активно развивается и все чаще можно услышать о новом методе управления, или улучшенном частотнике, или о внедрении частотного электропривода в какой-то сфере, где ранее никто и подумать не мог что это возможно. Но это факт!

Если мы внимательно рассмотрим электродвигатели, к которым применяют частотное регулирование – то это асинхронные или синхронные трехфазные двигатели. Существует несколько Но ведь есть и однофазные асинхронные машины, почему прогресс не касается их? Почему частотное управление не применяют так активно к однофазным машинам? Давайте рассмотрим.
Содержание:

Принцип работы однофазной асинхронной машины

При однофазном питании асинхронника в нем вместо вращающегося магнитного поля возникает пульсирующее, которое можно разложить на два магнитных поля, которые будут вращаться в разные стороны с одинаковой частотой и амплитудой. При остановленном роторе электродвигателя данные поля создадут моменты одинаковой величины, но различного знака. В итоге результирующий пусковой момент будет равен нулю, что не позволит двигателю запустится. По своим свойствам однофазный электродвигатель похож на трехфазный, который работает при сильном искажении симметрии напряжений:

на рисунке а) показана схема асинхронной однофазной машины, а на б) векторная диаграмма

Основные виды однофазных электроприводов

Как упоминалось однофазный двигатель не может развивать пусковой момент, следствием чего становится невозможность его самостоятельного запуска. Для этого придумали несколько способов компенсации магнитного поля противоположного по знаку основному.

Двигатели с пусковой обмоткой

В данном способе пуска кроме основной обмотки Р, имеющей фазную зону 120 0 , на статор наматывают еще и пусковую П, которая имеет фазную зону 60 0 . Также пусковая обмотка сдвигается относительно рабочей на 90 0 электрических. Для того, чтоб создать фазовый сдвиг между токами обмоток I р и I п последовательно в пусковую обмотку подключают элемент, приводящий к сдвигу фаз ψ (фазосдвигающее сопротивление Z п):

Где: а) схема подключения машины, б) векторные диаграммы при использовании различных сопротивлений.

Наилучшими условиями для пуска будет включения конденсатора в пусковую обмотку. Но поскольку емкость конденсатора довольно велика, соответственно и его стоимость и габариты тоже возрастают. Зачастую его применяют для получения повышенного момента для пуска. Пуск с помощью индуктивности имеет наихудшие показатели и в настоящее время не используется. Довольно часто могут применять запуск с помощью активного сопротивления, при этом пусковую обмотку делают с повышенным активным сопротивлением. После запуска электродвигателя пусковая обмотка отключается. Ниже показаны схемы включений и их пусковые характеристики:

Где: а,б) двигатели с пусковой обмоткой, в,г) конденсаторные

Конденсаторный двигатель

Данный тип электродвигателя имеет две рабочие обмотки, в одну из которых подключают рабочую емкость С р. Данные обмотки сдвинуты относительно друг друга на 90 0 электрических и имеют фазные зоны тоже 90 0 . При этом мощности обеих обмоток равны, но их токи и напряжения различны, также различны количества витков. Иногда величины конденсатора рабочего не достаточно для формирования нужного пускового момента, поэтому параллельно ему могут вешать пусковой, как это показано на рисунке выше. Схема приведена ниже:

Где: а) схема конденсаторного электродвигателя, б) его векторная диаграмма

В данном типе однофазных машин коэффициент мощности cosφ даже выше чем у трехфазных. Это объясняется наличием конденсатора. КПД такого электродвигателя выше, чем однофазного электродвигателя с пусковой обмоткой.

Частотное регулирование однофазных асинхронных электродвигателей

Итак, все чаще появляются предложения частотных преобразователей, которые могут управлять однофазными асинхронными машинами. В силу того что частотники предназначены для работы с трехфазными машинами, то для регулирования оборотов однофазной машинами необходим особый вид частотного преобразователя. Это обусловлено тем, что трехфазные и однофазные машины имеют немного разный принцип работы. Давайте рассмотрим схему включения, которую предоставляет один из официальных производителей частотных преобразователей для однофазных машин:

Это схема прямого подключения. Где: Ф-фаза питающего напряжения, N-нейтральный проводник, L1, L2 – обмотки двигателя, Ср – рабочий конденсатор.

А вот схема подключения преобразователя:

Как мы можем видеть, конденсатор при включении данной схемы отключается. Обмотка L1 переключается к выходу преобразователя фазы А, а L2 к В. Общий провод подключается к выходу С. Тем самым мы фактически получили двухфазную машину. Фазовый сдвиг теперь будет реализовывать частотный преобразователь, а не конденсатор. На выходе преобразователя будет обычное трехфазное напряжение.

Данный способ частотного регулирования трудно назвать однофазным, так как при питания двигателя от сети напрямую необходимо опять восстанавливать схему с конденсатором. Более того, этот способ регулирования частоты НЕ ПОДХОДИТ для машин с пусковой обмоткой, так как сопротивление рабочей и пусковой обмотки не равны, появится асимметрия.

Можем сделать вывод, что данный вид частотного регулирования подходит не всем электродвигателям, а только конденсаторным. Более того, при такой схеме подключения необходимо провести переподключение обмоток внутри электродвигателя (в коробке выводов электродвигателя), что после переподключения не позволит работать ему от сети напрямую. Поэтому если вы собираетесь питать электродвигатель от однофазной сети через частотник, то, может быть стоит купить преобразователь, который питается от однофазной сети, а двигатель обычный, трехфазный. Это лучше с точки зрения работы самой машины, также отсутствуют переделки внутри электрической машины. Если вы собираетесь таким образом модернизировать систему, то внимательно изучите характеристики электродвигателя, преобразователя, чтоб избежать пустой траты средств или выхода из строя элементов системы.

Экология познания.Наука и техника: Асинхронные двигатели применяются сегодня достаточно широко, а современные частотные преобразователи призваны сделать их работу более эффективной, устойчивой и безопасной.

Асинхронные двигатели применяются сегодня достаточно широко, а современные частотные преобразователи призваны сделать их работу более эффективной, устойчивой и безопасной. В каждом конкретном случае режим работы асинхронного двигателя свой, и особенности этих режимов отличаются, в связи с этим полезно оптимизировать параметры питания двигателей, чему и способствует применение частотных преобразователей.

При выборе частотного преобразователя для конкретной цели, необходимо учесть ряд рабочих параметров: мощность электродвигателя, его тип, диапазон регулировки скорости и точность этой регулировки, точность поддержания момента на валу. Это первостепенные параметры для выбора. Дополнительно стоит обратить внимание на габариты и форму устройства, а также на расположение элементов управления, будет ли оно удобным в вашей ситуации.

Частотные преобразователи бывают однофазными или трехфазными. И даже если на вход подается всего одна фаза, на выходе может быть как одна, так и три фазы. Обязательно обратите на это внимание при выборе частотного преобразователя.

Что касается мощности асинхронного двигателя, то она связана с максимальным потребляемым током, на который и следует ориентироваться. Если при старте двигателя требуется получить значительный пусковой момент на валу, то в этом случае и ток нужен больший, значит, имеет смысл выбрать частотный преобразователь на большее значение тока. Быстрый разгон и резкое торможение напрямую связано с током, если преобразователь в состоянии дать необходимый ток, значит, по этому параметру он вам подходит.

Для специальных двигателей, как то: погружные насосы, синхронные двигатели, с втяжным ротором, высокоскоростные, - максимальный ток частотного преобразователь должен быть лишь немного выше номинального тока двигателя.


Когда параметры нагрузки заранее известны и не меняются при постоянной частоте (например это могут быть вентиляторы, насосы, компрессоры, то есть те механизмы, которые отвечают за поддержание определенного состояния технологического процесса), то есть момент зависит непосредственно от частоты, применяют скалярный метод частотного регулирования с диапазоном от 5 до 50 Гц и выше.

К примеру, компрессор должен поддерживать определенное давление, и датчик давления, отслеживая текущее состояние в текущем режиме, дает сигнал на изменение оборотов, - обороты компрессора меняются, следовательно, меняется и нагрузка, эту возможность дает опция обратной связи.

Для более точного управления, когда требуется поддерживать постоянный момент или скорость даже на низких частотах, применяют частотные преобразователи с векторным регулированием. Они могут поддерживать скорость постоянной даже при резко меняющейся нагрузке, и это уже более сложное управление.


В основном частотные преобразователи с векторным управлением подходят для приведения в действие конвейеров, лифтов, транспортеров, строительной техники, прессов, станков, и другого оборудования, требующего постоянной скорости при переменной нагрузке. Могут такие преобразователи поддерживать и постоянный момент при меняющейся скорости.

Преобразователь с векторным управлением требует настройки, то есть ввода паспортных данных подключенного двигателя. В процессе работы происходит автоматическое регулирование на основе текущей информации о токе, напряжении и частоте. Векторный метод регулирования позволяет снизить реактивный ток двигателя до оптимального путем соответствующего понижения или повышения напряжения на двигателе.

Частотные преобразователи с обратной связью по скорости позволяют прецизионно регулировать скорость, когда нагрузка при одной и той же частоте может меняться, и момент вообще не связан напрямую со скоростью. У таких преобразователей возможна и регулировка скорости в широком диапазоне при моментах близких к номиналу.

К дополнительным опциям частотных преобразователей можно отнести возможность подключения по протоколам MODBUS, PROFIBUS, CANOPEN, а также управление посредством Bluetooth. Встречаются частотные преобразователи с выносным потенциометром, с возможностью управления с компьютера, и с функцией сохранения настроек.опубликовано

Ротор электродвигателя начинает свое вращение с помощью электромагнитных сил от вращающегося магнитного поля, вызванного обмоткой якоря. Число оборотов определяется частотой тока в сети. Стандартное значение частоты тока составляет 50 герц. Это означает, что 50 периодов колебаний совершается за 1 секунду. В минуту число колебаний составит 50 х 60 = 3000. Значит, ротор будет вращаться 3000 оборотов в минуту.

Если научиться изменять частоту тока, то появится возможность регулировки скорости двигателя. Именно по этому принципу действуют частотные преобразователи.

Современное исполнение преобразователей частоты выглядит в виде высокотехнологичного устройства, состоящего из полупроводниковых приборов, совместно с микроконтроллером электронной системы. С помощью этой системы управления изменяются важные параметры , например, число оборотов.

Изменить скорость привода можно и с помощью механического редуктора шестеренчатого типа, либо на основе вариатора. Но такие механизмы имеют громоздкую конструкцию, их нужно обслуживать. С использованием частотника (инвертора) снижается расход на техническое обслуживание, повышается функциональность привода механизма.

Виды

По конструктивным особенностям частотные преобразователи делятся:

  • Индукционные.
  • Электронные.

Электродвигатели асинхронного типа с фазным ротором, подключенные в режим генератора, представляют подобие индукционного частотного преобразователя. Они имеют малые КПД и эффективность. В связи с этим такие виды преобразователей не нашли популярности в использовании.

Электронные виды частотников дают возможность плавного изменения оборотов электродвигателей.

При этом реализуются два возможных принципа управления:

  1. По определенной зависимости скорости от частоты тока.
  2. По способу векторного управления.

Первый принцип самый простой, но не совершенный. Второй принцип применяется для точного изменения оборотов двигателя.

Конструктивные особенности

Рис. 1

Частотные преобразователи имеют в составе основные модули:

  • Выпрямитель.
  • Фильтр напряжения.
  • Инверторный узел.
  • Микропроцессорная система.

Все модули связаны между собой. Действие выходного каскада (инвертора) контролирует блок управления, с помощью которого меняются свойства переменного тока. Частотный преобразователь для электромотора имеет свои особенности. В его состав входит несколько защит, управление которыми осуществляется микроконтроллером. Например, проверяется температура полупроводников, работает защита от превышения тока и короткого замыкания. Частотник подключается к сети питания через устройства защиты. Для запуска электродвигателя не нужен магнитный пускатель.

Выпрямитель

Это первый модуль, по которому проходит ток. Он преобразует переменный ток в постоянный, благодаря полупроводниковым диодам. Особенностью частотника является возможность его питания от однофазной сети. Разница в конструкции состоит в разных типах выпрямителей.

Если мы говорим про однофазный частотник для двигателя, то нужно использовать в выпрямителе четыре диода по мостовой схеме. При трехфазном питании выбирается схема из шести диодов. В итоге получается выпрямление переменного тока, появляется два полюса: плюс и минус.

Фильтр напряжения

Из выпрямителя выходит постоянное напряжение, которое имеет значительные пульсации, заимствованные от переменного тока. Для их сглаживания используют такие элементы, как электролитический конденсатор и катушка индуктивности.

Катушка имеет много витков, и обладает реактивным сопротивлением. Это дает возможность сглаживать импульсы тока. Конденсатор, подключенный к двум полюсам, имеет интересные характеристики. При прохождении постоянного тока он в силу закона Киргофа должен быть заменен обрывом, как будто между полюсами ничего нет. При прохождении переменного тока он должен быть проводником, то есть, не иметь сопротивления. В результате доля переменного тока замыкается и исчезает.

Инверторный модуль

Это узел, имеющий наибольшую важность в преобразователе частоты. Он изменяет параметры тока выхода, состоит из шести транзисторов. Для каждой фазы подключены по два транзистора. В каскаде инвертора применяются современные транзисторы IGBT.

Если изготавливать частотные преобразователи своими руками, то необходимо выбирать элементы конструкции, исходя из мощности потребления. Поэтому нужно сразу определить тип электродвигателя, который будет питаться от частотника.

Микропроцессорная система

В самодельной конструкции не получится добиться таких параметров, имеющихся у заводских моделей, так как в домашних условиях сделать управляющий модуль сложно. Дело не в пайке деталей, а в создании программы для микроконтроллера. Простой способ – это сделать управляющий блок, которым можно регулировать обороты двигателя, осуществлять реверс, защищать двигатель от перегрева и перегрузки по току.

Чтобы изменить обороты мотора, нужно применить переменное сопротивление, подключенное к вводу микроконтроллера. Это устройство подает сигнал на микросхему, которая производит анализ изменения напряжения и сравнивает его с эталоном (5 вольт). Система действует по алгоритму, который создается до начала создания программы. По нему действует микропроцессорная система.

Приобрели большую популярность управляющие модули Siemens. Частотные преобразователи этой фирмы надежны, могут применяться для любых электродвигателей.

Принцип действия

Основа работы инвертора состоит в двойном изменении формы электрического тока.

Напряжение подается на блок выпрямления с мощными диодами. Они удаляют гармонические колебания, однако оставляют импульсы сигнала. Чтобы их удалить, подключен конденсатор с катушкой индуктивности, образующие фильтр, который стабилизирует форму напряжения.

Далее, сигнал идет на частотный преобразователь. Он состоит из шести мощных транзисторов с диодами, защищающими от пробоя напряжения. Ранее для таких целей применялись тиристоры, но они не обладали таким быстродействием, и создавали помехи.

Чтобы подключить режим замедления мотора, в схему устанавливают транзистор управления с резистором, который рассеивает энергию. Такой способ дает возможность удалять образуемое двигателем напряжение, чтобы защитить емкости фильтра от выхода из строя вследствие перезарядки.

Метод управления векторного типа частотой инвертора дает возможность создания схемы, которая автоматически регулирует сигнал. Для этого применяется управляющая система:

  • Амплитудная.
  • Широтно-импульсная.

Амплитудная регулировка работает на изменении напряжения входа, а – порядка действия переключений транзисторов при постоянном напряжении на входе.

При регулировании ШИМ образуется период модуляции, когда обмотка якоря подключается по очереди к выводам выпрямителя. Так как тактовая частота генератора высокая и находится в интервале 2-15 килогерц, то в обмотке мотора, имеющего индуктивность, осуществляется сглаживание напряжения до нормальной синусоиды.

Принцип подключения ключей на транзисторах

Каждый из транзисторов включается по встречно-параллельной схеме к диоду (Рис. 1). Через цепь транзистора протекает активный ток электродвигателя, реактивная часть поступает на диоды.

Чтобы исключить влияние помех на действие инвертора и электродвигателя, в схему подключают фильтр, который удаляет:

  • Радиопомехи.
  • Помехи от электрооборудования.

Об их образовании дает сигнал контроллер, чтобы снизить помехи, применяются экранированные провода от двигателя до выхода инвертора.

Чтобы оптимизировать точность функционирования асинхронных двигателей, в цепь управления инверторов подключают:

  • Ввод связи.
  • Контроллер.
  • Карта памяти.
  • Программа.
  • Дисплей.
  • Тормозной прерыватель с фильтром.
  • Охлаждение схемы вентилятором.
  • Прогрев двигателя.
Схемы подключения

Частотные преобразователи служат для работы в 1-фазных и 3-фазных сетях. Но если имеются промышленные источники питания на 220 вольт постоянного тока, то инверторы также можно подключать к ним.

Частотные преобразователи для 3-фазной сети рассчитаны на 380 вольт, их подают на мотор. 1-фазные частотники работают от сети 220 вольт, выдают на выходе 3 фазы. Частотник может подключаться к электродвигателю по схеме .

Обмотки мотора соединяются в «звезду» для частотника, работающего от трех фаз 380 вольт.

Обмотки двигателя соединяют «треугольником», когда инвертор запитан от 1-фазной сети.

При выборе метода подключения электродвигателя к частотнику необходимо определить мощности, которые создает двигатель на разных режимах, в том числе и медленный режим, тяжелый запуск. Преобразователь частоты нельзя эксплуатировать с перегрузкой длительное время. Его мощность должна быть с запасом, тогда работа будет без аварий, и срок службы продлится.

Применение

Частотные преобразователи используются в устройствах с необходимостью регулировки скорости двигателя.

  • Приводы насосов. Уменьшает потери тепла и воды на 10%. Снижает количество аварий, защищает электродвигатели.
  • Вентиляционные системы. Экономия больше, чем при работе с насосами, так как для запуска мощных вентиляторов применяют мощные приводы агрегатов. Экономия появляется за счет снижения потерь на холостом ходу.
  • Транспортеры. Инверторы адаптируют скорость двигателя к скорости технологической системы, которая постоянно изменяется. Мягкий пуск повышает ресурс привода системы, так как нет ударных нагрузок, которые вредят оборудованию.
  • Компрессоры.
  • Дымососы.
  • Центрифуги.
  • Лифтовое оборудование.
  • Оборудование в деревообработке.
  • Робототехника.
Преимущества
  • Сглаживание работы мотора при запуске и торможении.
  • Возможность управления группой двигателей.
  • Плавное управление скоростью электродвигателей, без использования редукторов и других механических систем. Это позволяет упростить управление, сделать его дешевле и надежнее.
  • Используются совместно с асинхронными двигателями для замены приводов постоянного тока.
  • Образование многофункциональных систем управления приводами.
  • Изменение настроек непосредственно в работе, без останова.

Во всем мире с успехом реализуются принципы частотного управления асинхронным электроприводом. Способ предусматривает кроме значительной экономии электроэнергии , усовершенствованное управление работы агрегатов, и ведет к существенному энергосбережению.

Принцип действия

Скорость вращения вала электродвигателя зависит от частоты подаваемого питающего напряжения. Использование частотных преобразователей повсеместно признано самым эффективным методом регулировки скорости вращения . Действие устройства заключается в формировании из значения выходного напряжения (U), характеризуемого постоянной частотой (F) и амплитудой (A), в напряжение с переменными параметрами. Это приводит к изменению величины частоты магнитного поля, изменяющего механическое вращение вала двигателя.

Принимая во внимание, что момент нагрузки постоянен, сила тока зависит от нагрузки, соответственно, происходит изменение подаваемого на клеммы двигателя напряжения пропорционального частоте, это сохраняет неизменным поток намагничивания и постоянный крутящий момент, а также неизменное значение тока.

Как следствие этих процессов, наблюдается постоянная корректировка скорости и вращающего момента в отношении рабочей нагрузки. Потери – минимальны, это достигается при помощи поддержания постоянного скольжения при любой скорости, для всех нагрузок.

Преимущества способа частотного регулирования

  • Управление электродвигателем может осуществляться на значительном расстоянии в удобном для этого месте.
  • Мягкий пуск и уменьшение затрат на техническое обслуживание устройства.
  • Возможность увеличивать производительность с помощью регулирования скорости, в соответствии с требуемой производственной потребностью.
  • Повышенный КПД преобразователя частоты до 97% асинхронной машины и до 95% повышает энергоэффективность за счет способа управления и применяемого электродвигателя.
  • Статический преобразователь применяется для переменного момента (невысокий крутящий момент, небольшие скорости) с уменьшенной величиной напряжения на клеммах присоединения к электродвигателю. Также, для использования в случае неизменного момента и мощности, в таком случае высокая эффективность достигается за счет плавного управления скоростью. Благодаря этим возможностям система может считаться универсальной.
  • Обязательный контроль скорости способствует достижению оптимизации технологического процесса, что способствует высокому качеству продукции.

Характеристики

Сигнал заданного значения напряжения и определенной частоты, получается по прохождении трех этапов – это:

  • Выпрямительный диодный мост.
  • Фильтр постоянного тока для осуществления сглаживания уже выпрямленного значения напряжения при помощи конденсаторов.
  • Инвертор или силовой модуль, работающий на базе IGВT (БТИЗ – биполярный транзистор с изолированным затвором). Этот силовой транзистор может использоваться в качестве ключа со значительным рабочим током в несколько кило-ампер, и с величиной напряжения в несколько киловольт с частотой коммутации более 30 кГц.


Рис №1. Три основных звена, из которых состоит устройство частотного преобразователя.

Типы частотного управления скоростью асинхронной машины

Существует два основных типа управления скоростью вращения, являющимися базовыми способами, это:

  • Скалярное (без использования обратной связи).
  • Векторное управление, обратная связь может применяться, а может отсутствовать.

Характеристика скалярного управления

При использовании этого типа управления, происходит сохранение соотношения U/F в неизменном виде по всему частотному интервалу для сохранения постоянного магнитного потока (Ф) электрического двигателя. Данный метод применяется при отсутствии надобности стремительного реагирования на колебания момента вращения и число оборотов.

Скалярное регулировании позволяет от одного частотного устройства запитать несколько рабочих асинхронных машин. При скалярном регулировании применяется компенсация скольжения за счет снижения скорости. Происходит увеличение постоянного момента вращения за счет повышения коэффициента V/F, это компенсирует понижение значения напряжения на статоре двигателя. Этот способ прост конструктивно и не нуждается в значительной точности и быстром реагировании на изменения числа оборотов вала.

Векторное управление двигателем

Увеличение эффективности в управлении рабочим приводом рекомендуется применить метод регулировки за счет изменения потокосцепления.

Самым точным и наиболее действенным считается метод векторного регулирования фазы тока в статоре машины и соответственно, фазой его магнитного поля относительно ротора. Для этого метода характерно применение датчика позиционирования или положения (энкодера), позволяющего показать точное положение ротора в каждый вращающий момент. Применение датчиков положения способно увеличить стоимость электропривода. С использованием энкодеров скорость можно регулировать с точностью до 0,01%.

Чтобы обойти такое ограничение рекомендуется применять в системе управления электродвигателем, преобразователь интегральных схем ASIC. Он создает адаптивную модель двигателя, выраженную математически с точным указанием величины токов, напряжений, сопротивления статора, индуктивность рассеивания на выходе. Делает возможным создание моделирования тепловых рабочих параметров двигателя при разных режимах работы.

Векторное управление без применения датчиков обратной связи способно обеспечить динамические погрешности, которые присутствуют в электроприводах с замкнутой обратной связью. Векторное управление без использования датчиков простое конструктивно, но весьма ограничено при использовании на невысоких скоростях, он отлично подходит для больших скоростей вращения.

Влияние токов высших гармоник

Важно : для сетей переменного тока система использующая преобразователь частоты служит нелинейной импульсной нагрузкой, где присутствуют токовые гармоники, отрицательно влияющие на качественные параметры линии электропередач в зависимости от значения сопротивления линии. Высшие гармоники обладают более низкой амплитудой и тем легче могут быть отфильтрованы.

Гармонические токи способствуют увеличению электрических потерь и снижение коэффициента мощности, способствуют перегреву элементов сети, например: кабелей, трансформаторов, двигателей, конденсаторов.

Сетевой дроссель или сглаживающий линейный реактор

Для преобразователей частоты обязательно наличие фильтрующего устройства. Снизить гармонические искажения можно за счет применения сетевых дросселей или DC-реакторов. Дроссель препятствует снижению величины напряжения на электродвигателе и способствует повышению его коэффициента мощности. Недостаток дросселя, он может привести нежелательному резонансу в общей системе электроснабжения, это происходит за счет неправильно выбранной комбинации его сопротивления с сопротивлением линии.

Рекомендуется сопротивление сетевого дросселя добавлять к существующему сопротивлению источника питания. При этом учитывается сопротивление трансформаторов и кабельных линий, в этом случае падение напряжения составит 2-4% и послужит для улучшения коэффициента мощности и уменьшения гармонических искажений на выходном токе.

Также сглаживающий реактор улучшает коэффициент мощности и служит для подавления или ослабления высших гармоник. Реактор помогает увеличить срок эксплуатации полупроводников, конденсаторных батарей. За счет этого происходит снижение значения тока выпрямительных диодов и уменьшается пульсация тока через конденсаторы.


Рис №2. Сетевой дроссель (реактор).

Мероприятия, направленные на сглаживание гармоник

Для подавления радиопомех, которые генерируются инвертором, в частотном преобразователе используют фильтр радиопомех и модуль DBR, устройства используются для соответствия требованиям по электромагнитной совместимости.

Также для уменьшения гармоник используют многоуровневый преобразователь, что влечет некоторое увеличение стоимости оборудования, снижает надежность и усложняет управление. Хорошее решение этого вопроса можно наблюдать при улучшении качества ШИМ, выполняется оптимизация временной диаграммы – происходит: пространственно векторная модуляция, улучшается контроль напряжения, повышается эффективность системы (частотный преобразователь + электродвигатель)

Энергосбережение

Повышение КПД электрического двигателя достигается за счет увеличения частоты коммутации. При подключении от преобразователя, происходит сохранение КПД двигателя, по сравнению со стандартными двигателями.

Энергоэффективность достигается за счет снижения тепловых потерь и потерь в железе, это можно нормализировать при снижении скорости. Качество управления происходит вследствие исключения механических устройств, при которых возникают потери, и понижается надежность – это могут быть: заслонки, системы тормозов, задвижки и т. д.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад, если вы найдете на моем еще что-нибудь полезное. Всего доброго.