Аннуитет пренумерандо означает что. Коэффициенты настоящей и будущей стоимости рент пренумерандо. Достоинства аннуитетных платежей

Аннуитет пренумерандо означает что. Коэффициенты настоящей и будущей стоимости рент пренумерандо. Достоинства аннуитетных платежей

Аннуитет – это общепринятый термин, который означает структуру погашения финансового механизма (ежемесячная оплата кредита, процентов и т.д.).

Аннуитетные выплаты структурируются одинаковыми суммами через одинаковое количество времени. График погашения, предоставленный данным способом, имеет определенные отличия от обычного графика погашения, где вся сумма должника направлена на конец срока финансового механизма. При обычном графике построения выплат сначала происходит оплата процентов, а только потом списывается основная сумма долга.

Иными словами, аннуитет представляет собой определенную систему выплаты задолженности, где сумма долга и процентов выплачиваются равномерно в течение всего срока кредитования. Еще аннуитет называют финансовой рентой, что по своей составляющей одно и то же.

Например, если заработная плата работнику начисляется каждый месяц в равном количестве, то данный доход является аннуитетным. При оформлении рассрочки в магазине на какой-либо товар, ежемесячный платеж в банк тоже будет иметь статус аннуитета.

Виды аннуитета

Сумма аннуитетного платежа всегда складывается из основного долга и процентных соотношений. В своем понятии данный термин имеет широкий охват: аннуитетом могут считаться:

  • срочный государственный заем в виде кредита, где ежегодно происходит оплата процентов и частично оплачивается сумма долга;
  • обыкновенный кредит для физических и юридических лиц;
  • страховой договор, который позволяет физическому лицу, заключившему его, рассчитывать на определенные выплаты по истечению заявленного срока времени (к примеру, выход на пенсию);
  • серия страховых выплат (например, при несчастном случае).

Аннуитет всегда устанавливается банковскими организациями индивидуально для каждого клиента. Он бывает двух видов:

  • аннуитет постнумерандо, где платеж должен осуществляться во второй половине отчетного периода;
  • аннуитет преднумерандо, где платеж должен осуществляться в первой половине отчетного периода.

Также аннуитет делится на:


При срочном аннуитете средства зачисляются в определенный период, который имеет ограниченное количество времени. Поступление денег характеризуется равными частями и через одинаковый промежуток времени. Расчет данного вида аннуитета происходит по системе наращения или по системе дисконтирования. Дисконтирование – это выявление стоимости выплат при помощи изучения денежных поступлений к определенной временной точке. Проще говоря, это анализ соотношения будущих доходов к их сегодняшней стоимости. Примерами срочных аннуитетов могут быть разного рода платежи за аренду жилья, земли и др.

Бессрочным аннуитетом принято считать равные выплаты через равный промежуток времени в течение долгого срока. Консоль является отличным примером для понимания специфики бессрочного аннуитета. Данные облигации, поддерживаемые государством, имеют срок действия более 30 лет.

Аннуитетные выплаты имеют различие по количеству выплат. Они могут выплачиваться как один раз в год, так и несколько раз в течение года (при срочном аннуитете).

Начисление процентов может происходить один раз в год, несколько раз в год или непрерывно. Этот вопрос всегда решается в индивидуальном порядке между банковской организацией и клиентом.

В зависимости от финансовой ситуации в стране или политики банка, могут устанавливаться:


Для того, чтобы определить сумму равных выплат по кредитованию в течение определенного времени, необходимо рассчитать коэффициент аннуитета, который способен преобразовать единовременную выплату в платежный график.

Расчет аннуитета (формулы)

Для расчета данного коэффициента используется специальная общепринятая формула:

С практической точки зрения могут возникать некоторые расхождения от математического расчета при помощи формулы: для удобства совершения платежа может быть применена система округления суммы выплат или же округление суммы проводится из-за разного числа дней в том или другом месяце. В особенности это касается последнего месяца в графике платежей. По факту, замыкающая список сумма всегда отличается в меньшую сторону на некоторое значение.

Практически всегда при аннуитете платежи производятся в конце отчетного периода – постнумерандо. В данном случае, сумма выплаты за период должна рассчитываться по другой формуле:

Для того, чтобы более детально рассмотреть структуру аннуитетных платежей, стоит решить простую задачку. Например, нужно рассчитать ежемесячную выплату по кредиту сроком на пять лет и с суммой в 30 тысяч рублей под 8% годовых. Выплаты будут осуществляться ежемесячно, то необходимо перевести годовую процентную ставку в месячную. Делается это по довольно простой формуле:

Далее нужно подставить в формулу значения i = 0.00643 и n = 60 (5 лет – это 60 месяцев). Полученный коэффициент нужно умножить на величину кредита – 30000. В итоге получаем, что сумма ежемесячного платежа равна примерно 603 рубля.

Выплата кредитного займа происходит обычно каждый месяц или каждый квартал. При таких выплатах задается годовая процентная ставка i. При условии, что выплаты назначаются постнумерандо m раз в год за n лет, то существует формула, которая отличается от предыдущей формулы повышенной точностью расчета аннуитетного коэффициента:

Указанная формула для расчета коэффициента аннуитетных платежей основывается на наращении величины долговой суммы при помощи сложной процентной формулы. В банковских расчетах имеется еще одна формула для определения коэффициента, которая основывается на наращении величины долговой суммы при помощи простой процентной формулы. Отличительная черта простых и сложных процентов – это отсутствие промежутка в капитализации процентных соотношений. В данном раскладе будет в первую очередь производиться погашение основного долга, а уже после его оплаты пойдет оплата процентов.

Стоит отметить, что выполнять все вышеперечисленные действия собственноручно – это очень долго и трудоемко. Уйдет большое количество времени, чтобы разобраться в одним человеком, а если нужно рассчитать несколько сотен аннуитетов, то ситуация для простого сотрудника банка окажется совершенно невыполнимой. Поэтому при оформлении кредита работники банковских организаций имеют в своем арсенале специальные калькуляторы и программы, где нужно только правильно вписать числовые значения, и они самостоятельно рассчитают график аннуитетных платежей для каждого клиента.

Достоинства аннуитетных платежей

Аннуитетные платежи являются одним из современных способов погашения кредитного долга перед банком. Данный вариант оплаты долгового обязательства не всегда является выгодным для клиента, но отличается повышенным удобством – отсутствует неразбериха «когда платить и в каком количестве». Платеж по кредиту поступает ежемесячно в одно и то же время и в одинаковом денежном эквиваленте. Это огромный плюс для клиента и для банковской организации: нет нужды идти в банк и брать расчетный лист для выявления суммы долга на последующий месяц.

Помимо этого данный способ оплаты кредита предпочтителен для тех лиц, которые имеют невысокий заработок.

Вместе с аннуитетными платежами существует оплата кредитного долга по дифференцированной системе, где выплаты ежемесячно подвергаются перерасчету, потому что происходит оплата части процентов от конечной величины долга клиента. С каждым месяцем после оплаты кредита сумма долга уменьшается и, соответственно, процентная величина также изменяется. Выходит, что каждый месяц необходимо вносить все меньшее количество денег, но первоначальные суммы платежа достаточно высокие и не каждое лицо имеет возможность их вносить.

Недостатки

У данного вида платежей имеется один большой минус: первоначально выплаты строятся с преобладанием процентного эквивалента, т.е. сумма долга строится на 2/3 из процентов, а 1/3 – это сумма долга.

Аннуитет является выгодным банковской организации: сначала банк обезопасит себя, забрав проценты, а потом уже «примет» кредитные деньги.

Если клиент намерен досрочно погасить свой долг, то эту операцию следует произвести до того момента, как будут выплачены проценты. Данная операция практически не будет иметь смысла при погашении «после» — сумму, отданную за проценты, никто не вернет. В таком случае досрочное погашение просто избавит от кредитного обязательства.

Подведя итог, можно сказать, что аннуитет – это хороший выход для заемщиков, которые имеют долговое обязательство и не обладают высоким уровнем дохода. Ведь всегда легче и проще платить раз в месяц одинаковую сумму в один и тот же день.

В большинстве современных коммерческих операций подразу­меваются не разовые платежи, а последовательность денежных поступлений (или, наоборот, выплат) в течение определенного периода. Это может быть серия доходов и расходов некоторого предприятия, выплата задолженностей, регулярные или нерегу­лярные взносы для создания разного рода фондов и т. д. Такая последовательность называется потоком платежей.

Поток. однонаправленных платежей с равными интервалами между последовательными платежами в течение определенного количества лет называется аннуитетом (финансовой рентой).

Теория аннуитетов является важнейшей частью финансовой математики. Она применяется при рассмотрении вопросов доход­ности ценных бумаг, в инвестиционном анализе и т. д. Наиболее распространенные примеры аннуитета: регулярные взносы в пен­сионный фонд, погашение долгосрочного кредита, выплата про­центов по ценным бумагам.

Аннуитеты различаются между собой следующими основными характеристиками:

  • величиной каждого отдельного платежа;
  • интервалом времени между двумя последовательными плате­жами (периодом аннуитета);
  • сроком от начала аннуитета до конца его последнего периода (бывают и неограниченные по времени - вечные аннуитеты);
  • процентной ставкой, применяемой при наращении или дис-контировании платежей.

Аннуитет, для которого платежи осуществляются в начале со­ответствующих интервалов, носит название аннуитета пренуме-рандо; если же платежи осуществляются в конце интервалов, мы получаем аннуитет постнумерандо (обыкновенный аннуитет) -по­жалуй, самый распространенный случай.

Наибольший интерес с практической точки зрения представля­ют аннуитеты, в которых все платежи равны между собой (посто­янные аннуитеты), либо изменяются в соответствии с некоторой закономерностью. Именно такие аннуитеты мы и изучим в даль­нейшем.

Введем следующие обозначения:

Р - величина каждого отдельного платежа;

ic -сложная процентная ставка, по которой начисляются проценты;

Sk -наращенная сумма для k-го платежа аннуитета постну­мерандо;

S- наращенная (будущая) сумма всего аннуитета постнуме­рандо (т. е. сумма всех платежей с процентами);

Ak -современная величина k-го платежа аннуитета постну­мерандо;

А - современная величина всего аннуитета постнумерандо (т. е. сумма современных величин всех платежей);

Sп - наращенная сумма аннуитета пренумерандо;

Aп -современная величина аннуитета пренумерандо;

n - число платежей.

Рассмотрим аннуитет постнумерандо с ежегодными платежами Р в течение п лет, на которые начисляются проценты по сложной годовой ставке i c (рис. 5).

Рис. 5.

Сумма S 1 для первого платежа, проценты на который будут на­числяться, очевидно, (n - 1) раз, составит по формуле (3.1):

S 1 = Р(1 + i c) n-1

Для второго платежа (проценты на него будут начисляться на один год меньше) имеем

Sn=P Тогда для общей наращенной суммы имеем

  • (7.1)

где ki,n- коэффициент наращения аннуитета с параметрами i, n - представляет собой, как можно заметить, сумму членов гео­метрической прогрессии, для которой первый член a 1 равен 1, а знаменатель (назовем его q)составляет (1 + i c).

Используя математическую формулу для суммы членов геомет­рической прогрессии:

запишем выражение (7.1) в более удобном для вычислений виде:

Для коэффициента наращения, соответственно, имеем

Найдем теперь современную величину А данного аннуитета (рис. 6).


Рис. 6.

При заданной процентной ставке ic современное значение каж­дого платежа будет определяться по формуле:

Современная величина всего аннуитета, следовательно, соста­вит

где ai,n - коэффициент приведения аннуитета, опять является суммой геометрической прогрессии, теперь уже с параметрами а 1 =q=1/(1 +i c).

Тогда для ai,n получаем выражение:

для современной величины А соответственно

Как видим, современная величина и наращенная сумма анну­итета связаны между собой соотношением:

S=A(1+i c) n (7.6)

Из полученных формул путем преобразований легко получить еще несколько формул.

Так, для определения размера очередного платежа (Р) имеем

Для определения срока аннуитета (п), при прочих заданных условиях, получаем

Для конкретных вычислений выбирается одна из двух формул каждой пары в зависимости от заданных известных величин.

Очевидно, отличие от предыдущего случая состоит здесь в том, что период начисления процентов на каждый платеж увеличива-

Рис. 7. Будущая стоимость аннуитета пренумерандо

ется на один год, т. е. каждая наращенная сумма Skувеличивается в (1 + ic)раз. Следовательно, для всей суммы Sпимеем

Для коэффициента наращения аннуитета пренумерандо k п i,n по­лучаем следующее соотношение:

Можно также заметить, что для определения современных зна­чений каждого платежа дисконтирование по заданной ставке ic проводится на один раз меньше, чем в случае аннуитета пренуме­рандо. Поэтому каждая современная величина Аkбудет больше в (1 +0 раз. Таким образом,

А для коэффициента приведения а п i,n получаем

a п i,n =a i,n (1+i c) (7.14)

Для нахождения размера платежа и срока аннуитета пренуме­рандо можно по формулам (7.11) и (7.13) найти для заданных зна­чений Sпи Aп соответствующие значения Sи А и пользоваться далее формулами, выведенными для аннуитета постнумерандо.

Для определения коэффициентов наращения и приведения обыкновенного аннуитета существуют таблицы, которыми удобно пользоваться в практических

вычислениях. Максимальные процентные ставки в таких таблицах обычно не превышают 30-40%, что значительно ниже размера процентных ставок, применяемых в России в настоящее время. Но нужно иметь в виду, что п в данном случае - не число лет, а число периодов одинаковой про­должительности (день, месяц, квартал и т. д.), в которых принята данная процентная ставка. Таким образом, если задана годовая процентная ставка, можно найти эквива­лентную ей ставку на более коротком интервале и рассмат­ривать далее п как число таких интервалов.

Если срок аннуитета n не ограничен, мы получаем случай веч­ного аннуитета. Для аннуитета постнумерандо выражения для на­ращенной суммы и современной величины приобретут следую­щий вид:

Для аннуитета пренумерандо, соответственно, получаем

Таким образом, различие между двумя типами вечных аннуи­тетов, естественно, сказывается на определении их современной величины.

Не менее важен случай, когда последовательность платежей из­меняется по некоторому закону, и, следовательно, также может быть описана с помощью математических средств.

Рассмотрим обыкновенный аннуитет, в котором платежи по­стоянно увеличиваются на определенную положительную величи­ну h,т. е. являются членами арифметической прогрессии с пер­вым членом a1 = Р и разностью h. Т. е. платежи представляют собой ряд:

Р, Р+ h, Р+ 2h,... Р+ (п- 1)h.

Для наращенной суммы всего аннуитета получаем следующее выражение:

S=Р(1+ i c) n-1 + (Р+ h)(1+ ic) n-2 + (р+ 2h)(1+ ci) n-3 +...+ [Р+ (n -1)h].

Умножим обе части данного равенства на (1 + ic) вычтем первое выражение из полученного после умножения:

S ic= P(1+ ic)n -[Р+(п -1)h]+h(1+ ic)n-1+ h(1+ ic)n-2+...+ h(1+ ic).

Видно, что часть полученного равенства представляет собои сумму членов геометрической прогрессии, где a1= h{1+ ic); q = = (1 + ic). После несложных преобразований получаем:

Найдем теперь современное значение аннуитета А.

Умножим обе части равенства на (1 + i c) n .

A(1+i c) n =P(l+i c) n-1 +(P+ h)(1+i c) n-2 + ... + =S.

Как видим, в данном случае верна формула (7.6), полученная ранее для обыкновенного аннуитета:

А (1 + i с) n - S,

Возможен также случай, когда платежи постоянно возрастают в q раз, т. е. являются членами геометрической прогрессии:

Р, Pq, Pq 2 , ... , Pq n-1 , Тогда для наращенной суммы аннуитета имеем

S=Р[(1+ i c) n-1 + q(1+ i c) n-2 +/(1+ i c) n-3 +...+q n-1 ].

В квадратных скобках мы получили геометрическую прогрес­сию с первым членом а1 =(1 + ic)nи знаменателем q/(1 + ic). Ис­пользуя опять формулу для суммы геометрической прогрессии, получаем выражение для S:

S=P/.

Очевидно, чтобы найти современное значение аннуитета А, здесь также можно применить формулу (7.6):

A=P/.

Теперь мы имеем возможность решить пример по определению потока платежей произвольной величины.

Найти современную величину потока платежей, определяемого следующим образом: первый год - поступления 500 ам. долл., второй год - поступления 200 ам. долл., третий год - выплата 400 ам. долл., далее в течение семи лет - доход по 500 ам. долл. Став­ка дисконтирования - 6% годовых. Решение

В данном примере поток платежей в течение последних семи лет представляет собой постоянный аннуитет. По формуле (7.5) мы можем рассчитать его современную величину aq. Нельзя за­бывать, что это будет современная величина на момент начала четвертого периода:

500 5,58 = 2791 (ам. долл.)

(коэффициенты приведения находим по таблице 4 Приложе­ния 2). Далее, используя формулу (3.11), находим современные значения на момент начала потока платежа для всех оставшихся платежей и величины aq:

А1 = 500 0,953 = 471,5 (ам. долл.);

A2 =200 0,89 = 178 (ам. долл.);

А3 = 400 0,840 =336 (ам. долл.);

А4=2791 0,840 = 2344,44 (ам. долл.).

Складывая получившиеся величины, находим современную ве­личину всего потока платежей:

A =A1 +А2+ А3+ А4= 2657,94 ам. долл.


Современная величина аннуитета

Во всех случаях, когда в произвольном потоке пла­тежей встречаются серии, которые могут быть опи­саны как постоянные или изменяющиеся по некоторому за-

кону аннуитеты, следует обращать внимание на начальный момент и срок этих аннуитетов, не совпадающие с началь­ным моментом и сроком полного потока платежей.

Следующий этап нашего изучения -конверсия аннуитетов. Под конверсией аннуитета понимается такое изменение на­чальных параметров аннуитета, после которого новый аннуитет был бы эквивалентен данному.

Два аннуитета считаются эквивалентными, если равны их со­временные величины, приведенные к одному и тому же моменту времени.

На практике необходимость рассчитать параметры эквивалент­ного аннуитета чаще всего возникает при изменении условий вы­платы долга, погашения кредита или займа и т. п. При этом кон­версия может произойти как в момент начёта аннуитета (на этот момент и рассчитываются современные величины эквивалентных аннуитетов), так и после выплаты некоторой части аннуитета. В последнем случае все расчеты производятся на остаток долга в момент конверсии.

Рассмотрим наиболее распространенные случаи конверсии по­стоянных аннуитетов.

1. Через некоторый промежуток времени n0 (он может быть равен и 0)после начала аннуитета весь остаток долга может быть выплачен за один раз (выкуп аннуитета). Очевидно, что в этом случае величина выплачиваемой суммы будет равна современной величине остатка аннуитета, рассчитанной для срока n1 = n- n0.

  • 2. Может возникнуть задача, обратная предыдущей: задолжен­ность погашается частями, в виде выплаты постоянного аннуите­та, и требуется определить один из параметров аннуитета при за­данных остальных. Поскольку здесь известна сумма долга, т. е. современная величина аннуитета, для нахождения неизвестного параметра используем формулы (7.8)или (7.10).
  • 3. Период выплаты долга может быть изменен при сохранении прежней процентной ставки. Величину Р1 платежа для срока n1 находим, используя уравнения эквивалентности (приравниваются современные значения аннуитетов):

Очевидно, что. если срок аннуитета увеличится, значение Р со­кратится. и наоборот.

4. Может возникнуть ситуация, когда величина платежа P дол­жна быть изменена в ту или другую сторону. Рассмотрим данный случай на примере 28.

Для погашения кредита, выданного под сложную процентную ставку 4%годовых, в течение 10лет должны вноситься ежегодные платежи в размере 5 000ам. долл. Изменившиеся условия дают возможность с самого начала вносить по 7 500ам. долл. Опреде­лить новый срок n1, за который долг будет полностью выплачен. Решение

Рассчитаем сначала современную величину имеющегося анну­итета (которая и представляет собой величину долга на начальный период). По формуле (7.5)получаем

А= 5 000 /0,04 - 40554,5(ам. долл.). Далее для изменившегося Р найдем коэффициент приведения аннуитета по той же формуле:

аi,n =А/Р 1 = 40554,5ам. долл./ 7500ам. долл. = 5,4.

Используя таблицу 4Приложения 2найдем значение n 1 , более всего подходящее данному коэффициенту при процентной ставке4%, округляя его в меньшую сторону: n 1 = 6. Поскольку значениеn1найдено приближенно, необходимо рассчитать современное значение нового аннуитета:

А1 = 7 500 /0,04 = 39 316(ам. долл.). Если величины платежей изменяться не могут, недостающая сумма A0 = 40 554,5 - 39316 = 1238,5(ам. долл.) должна быть выплачена кредитору сразу. (Пример, когда в такой ситуации кор­ректируются величины платежей, рассматривается в конце этого раздела).

5. Начало выплаты задолженности при заданной процентной

ставке ic может быть отсрочено: а) при сохранении размера платежа; б) при сохранении срока выплаты.

Очевидно, что в первом случае должен увеличиться срок анну­итета, а во втором -величина платежа.

Обозначим через n 0 период отсрочки. Тогда на момент начала выплаты, сумма долга а1, которая должна являться современной величиной нового аннуитета, составит по формуле сложного про­цента:

A1=A(1+ic) n0 . Отсюда получаем уравнение эквивалентности:

Р = P (1 + i c) n0

Далее поступаем аналогично рассмотренным ранее случаям. В первом варианте находим значение n1 продолжительности нового аннуитета при заданном значении Р1 = Р (n1 будет найдено при­ближенно, поэтому потребуется выплата компенсирующей сум­мы, см. пример 28). Во втором - величину платежа Р1 при n 1 = = n – n 0 .

6. В некоторых случаях может потребоваться объединение не­скольких аннуитетов в один (консолидация аннуитетов). При этом объединяемые аннуитеты могут быть любыми, а в искомом объединяющем аннуитете один из параметров неизвестен при всех остальных заданных.

Два аннуитета с параметрами:

  • 1) величина платежа - 2 000 ам. долл., процентная ставка - 5% годовых, срок - 12 лет;
  • 2) величина платежа - 3 500 ам. долл., процентная ставка - 6% годовых, срок - 10 лет;

требуется заменить одним - со сроком 10 лет и процентной став­кой 6% годовых.

Определить величину нового платежа.

Найдем сначала общую современную величину двух аннуите­тов. По формуле (7.5) имеем

А = A1 +A2=2000/0,05+ + 3 500 /0,06 = = 17 726,5 + 25 760,3 = 43 486,8 (ам. долл.). Далее по формуле (7.7) находим величину нового платежа:

Р = 43 486,8 0,06/ = 5 930 (ам. долл.).

Нам остается теперь рассмотреть важное практическое прило­жение теории аннуитетов - составление различных вариантов (планов) погашения задолженности. При составлении плана по-

гашения интерес представляют размеры периодических платежей заемщика - выплаты процентов и выплаты по погашению основ­ной суммы долга - при различных условиях погашения (такие платежи носят название срочных уплат).

Основных вариантов погашения задолженности - пять:

  • 1. Займы без обязательного погашения, по которым постоянно выплачиваются проценты. Задача в данном случае заключается в нахождении размера выплачиваемой суммы Р при заданной про­центной ставке /. Мы имеем здесь случай вечного аннуитета. Раз­мер платежа определяется по формуле (7.15), из которой получаем P=Ai c .
  • 2. Погашение долга в один срок

Если заемщик должен вернуть всю сумму долга в конце срока, целесообразным бывает создание погасительного (амортизацион­ного) фонда, для чего периодически вносятся определенные сум­мы, на которые начисляются проценты.

Если процентная ставка, под которую вносятся средства, не превышает размеров ставки, под ко­торую выдается заем, создание погасительного фонда не имеет смысла. Выгоднее сразу расплачиваться этими сум­мами с кредитором.

Введем обозначения:

D- основная сумма долга (без процентов);

i c -ставка процента по займу;

I - процент по займу;

Р - размер взноса в погасительный фонд;

g -ставка, по которой начисляются проценты на взносы в фонд;

У - величина срочной уплаты;

n -срок займа.

Найдем величину срочной уплаты У и ее составляющих (К=1+Р).

По определению I = D i c .

Сумма, накопленная в погасительном фонде за n лет, т. е. на­ращенная сумма аннуитета с параметрами Р, п, g, должна соста­вить величину D. По формуле (7.2) получаем

D = Р[(1 +g)n-1]/g. Отсюда

P=Dg/[(1 +g)n-1].

Значит, в данном случае величина срочной уплаты определяет­ся формулой:

Y=Di c + Dg/[(1+ g) n -1]. (7.23)

Если проценты не выплачиваются, а присоединяются к основ­ной сумме долга, то срочная уплата будет состоять только из взно­сов в погасительный фонд.

Общая сумма долга составит по формуле (3.1) величину D(1 + ic)n, откуда получаем

Y= Р= D(1 +i c) n g/[(1+g) n -1].

3. Погашение долга равными суммами

Пусть долг погашается в течение n лет равными суммами, а проценты периодически выплачиваются. Тогда на погашение по­стоянно идут платежи размером D/n, а процентные выплаты еже­годно сокращаются, так как уменьшается основная сумма долга. Обозначим

Dk- сумма долга после k-го года:

Ik - процентная выплата за k-й год. Тогда

D1= D- D/n = D(1 -1/n);

На конец второго года получаем D2= D1- D/n= D(1 -2/);

I2= D(1- 1/n)ic;

Y2 = D(1 -1/n) ic+ D/n,и т. д.

Для определения размера срочной уплаты и процентного пла­тежа после k-го года получаем Dk= D(1- k/n);

Ik= D(1 -(k-1)/n] ic:

Yk= D ic+ D/n.

На конец срока, т. е. n-го года имеем

Dn= D(1- n/n) = 0:

Yn= D |1 – (n -1)/n] ic+ D/n = D (1 + ic)/n. Видно, что самые большие суммы приходится платить в начале периода погашения, что может в большинстве случаев расцени­ваться как недостаток этого метода погашения задолженности.

4. Погашение долга с использованием постоянных срочных уплат

Пусть займ величиной D, выданный пол сложную годовую про­центную ставку ic, погашается в течение /; лет равными срочными уплатами Y= 1 + Р. Понятно, что со временем составляющая I

  • (проценты по займу) будет уменьшаться, так как уменьшается ос­новная сумма задолженности. Соответственно, составляющая Р (сумма, идущая на погашение займа) будет увеличиваться.

Выведем формулы для расчета суммы процентных денег и сум­мы на погашение долга на конец k-го года.

Периодическая выплата постоянной суммы Y при заданной процентной ставке ic в течение п лет является аннуитетом с соот­ветствующими параметрами.

Поэтому величина срочной уплаты определяется по формуле (7.9):

Y= D/a i,n (a i,n - коэффициент приведения ренты).

Обозначив через Рk сумму, идущую на погашение займа в кон­це k-го года, запишем следующие соотношения:

  • 1)I k +P k =I k+1 +P k+1 ;
  • 2) D k = D k-1 - P k ;
  • 3) I k = D k-1 i с. откуда D k-1 = Ik/ic;
  • 4) Ik+1= Dkic, откуда Dk =Ik+1/ic

Подставляя выражения 3) и 4) в соотношение 2), получим

Ik+1/ic=Ik/i c -рk, откудаi k+1 =Ik-P k i c Перепишем выражение 1), используя последнее равенство:

Ik+ Pk= Ik- Pkic+ Pk+1

откуда получаем

Pk+1=Pk(1+ic)=P1(1+ic) k

Так как I 1 = Di c для Р, получаем

P1=D/a i,n -Di c =D (l/a i,n -ic). Следовательно,

Pk=D(1/a i,n -ic)(1+ic) k-1

Ik=D k-1 ic =Dic/с - D (1/a i,n -ic)[(1 + i c) k-1 ].

Когда займ погашается постоянными срочными уплатами, их величина может быть заранее задана, и тогда возникает задача определения периода погашения долга п. Вопрос определения срока аннуитета рассматривался ранее в связи с конверсией анну-

итетов. При этом для выполнения принципа эквивалентности не­обходимо было доплатить недостающую сумму (возникающую в результате округления полученного п) в начале периода погаше­ния. Вместо этого возможно также небольшое изменение размера срочных уплат.

Рассмотрим для прояснения ситуации пример.

Займ в размере 12000 ам. долл. выдан под сложную процент­ную ставку 4% годовых. Определить продолжительность периода погашения, если заемщик собирается выплачивать ежегодно по 1 500 ам. долл. Составить график погашения долга.

Рассчитаем сначала коэффициент приведения аннуитета ад д:

a 4,n = A/Р = 12 000 ам. долл./l 500 ам. долл. = 8.

По таблице определим приблизительно п, соответствующее данному коэффициенту и процентной ставке 4%. Так как nп = 10 соответствует коэффициент а 4,10 =8,11, возьмемnп = 9 и рассчи­таем для этого срока и современной величины А = 12 000 ам. долл. новое значение платежа Р. Используем для этого формулу (7.8), находя значение коэффициента приведения по таблице 4 Прило­жения 2.

Р = А/а 4,9 = 12 000 ам. долл./7 ,435 = 1 614 ам. долл.

Составим теперь график погашения долга, в который должны входить процентные выплаты, расходы по погашению долга, ос­таток долга на конец каждого года.

Используя выведенные ранее формулы, находим искомые зна­чения:

Сумма долга на конец года

Срочная уплата (Y)

Проценты (I/)

Выплата на погашение (Р)

Небольшое расхождение в остатке долга на конец 8-го года и сумме последней выплаты на погашение происходит из-за округ­ления некоторых значений предыдущих сумм.

5. Погашение долга с использованием переменных срочных уплат

Во многих случаях предпочтительнее оказывается погашение долга с использованием переменных срочных уплат. Срочные уп­латы могут изменяться в соответствии с некоторой закономернос­тью или задаваться графиком погашения.

Рассмотрим случай, когда последовательность срочных уплат представляет собой арифметическую профессию с заданной раз­ницей h. При сроке погашения п и процентной ставке ic, исполь­зуя формулу (7.20), находим величину срочной уплаты Р:

Р = [А i c +nпh/(1 +ic) n - h а i,n ]/ исходя из которой разрабатывается план погашения долга.

6. На практике часто встречается случай, когда заранее задают­ся размеры всех срочных уплат, кроме последней, определяемой величиной остатка долга на начало последнего периода (см. при­мер 31).

Долг в размере 10 000 ам. долл. требуется погасить за пять лет, размеры срочных уплат в первые четыре года - 2 000 ам. долл., 2 000 ам. долл., 4 000 ам. долл., 1 500 ам. долл. Найти величину последней уплаты, если процентная ставка составляет 5% годо­вых.

Разработаем план погашения долга.

Проценты за первый год составляют

I1 = Dic=10 000 0,05 = 500 (ам. долл.).

Р1 = Y1 - I1 = 1 500 ам. долл.;

D1= D-P1 = 8 000 ам. долл.

Для последующих лет получаем

I2 = D 1 i с = 8500 ам. долл. 0,05 = 425 ам. долл.;

Р 2 = Y 2 -I 2 = 2 000 - 425= 1 575 (ам. долл.):

D 2 = D 1 -P 2 =8 500 - 1 575 = 6 925 (ам. долл.);

I 3 =D 2 ic=6925 ам. долл. * 0,05=346,25, ам. долл.;

Р 3 = Yз -Iз = 4 000 - 346,25 = 3 653,75 (ам. долл.);

D 3 = D 2 -Рз = 6 925 - 3 653.75 = 3 271,25 (ам. долл.);

I 4 =D 3 ic= 3 271,25 ам. долл. 0,05 = 163,56 ам. долл.;

P 4 =Y 4 -I 4 = 1500 - 163,56 = 1 336,44 (ам. долл.):

D 4 =D 3 -P 4 =3 271,25 - 1 336,44 = 1 934,81 (ам. долл.);

I 5 =D 4 ic = 1 934,81 ам. долл. 0,05 = 96,74 ам. долл.;

Y 5 =D 4 +I 5 =1934,81=96,74=2031,55 (ам. долл.); P4= D4= 1 934,81 ам. долл.

Итак, величина последней уплаты должна составить 2031,55 ам. долл.

Аннуитетом (финансовой рентой ) называется такой денежный поток, при котором платежи равного размера перечисляются через равные временные отрезки. Все аннуитеты бывают срочными и бессрочными .

Чем срочный аннуитет отличается от обычного?

Срочный аннуитет предусматривает последовательность денежных перечислений одного размера с начислением процентов с самого первого периода. Разницу между двумя видами аннуитетов легче понять из рисунка, приведенного в книге Дж. Ван Хорна:

На рисунке сопоставляются процедуры расчета двух видов аннуитета размером в 1000 долларов и годовой ставкой в 8%. Дж. Ван Хорн отмечает: создается впечатление, будто при обычном аннуитете выплаты происходят в 1,2 и 3 периодах, а при срочном - во 2, 3, 4 периодах. Общая стоимость трехлетнего срочного аннуитета по примеру оказывается равной стоимости обычного аннуитета с одним дополнительным периодом. Разумеется, срочный аннуитет является более выгодным для получателя денег, потому как его процентная прибыль выше.

Какие виды срочного аннуитета встречаются?

Срочные аннуитеты классифицируются по времени платежа на постнумерандо и пренумерандо . При аннуитете пренумерандо деньги перечисляются в начале года, при постнумерандо - в конце.

И постнумерандо, и пренумерандо могут рассчитываться по двум схемам: дисконтирования и наращения :

Дисконтирование - это расчет текущей стоимости будущего финансового потока. При дисконтировании срочного аннуитета пренумерандо используется такая формула:

A = FV * * (1 + r) / r

где FV - общая сумма аннуитета, r - процентная ставка, A - фиксированная часть выплаты, n - число периодов.

Выражение в квадратных скобках носит название аннуитетный коэффициент дисконтирования . Это выражение можно представить математически, однако, расчет займет слишком много времени. Гораздо легче определить аннуитетный коэффициент с помощью специальной таблицы:

Чтобы иметь возможность воспользоваться таблицей, достаточно знать процентную ставку и число периодов.

Наращение - это, напротив, вычисление будущей суммы, которую реально получить с тех денег, которые есть в наличии. Формула для расчета срочного аннуитета пренумерандо немного отличается:

FV = A * [(1 + r) ^ n - 1] * (1 + r) / r

Для коэффициента наращения тоже существует таблица расчетов:

Для вычисления срочного аннуитета постнумерандо используются следующие формулы (переменные уже знакомы):

Дисконтирование

A = FV / (1 + r) + FV / (1 + r) ^ 2 +…+ FV / (1 + r) ^ n

Наращение

FV = A * (1 + r) ^ (n - 1) + A * (1 + r) ^ (n - 2) + … + A

Где применяются срочные аннуитеты?

Со срочными аннуитетами люди постоянно встречаются в жизни. Например, если человек, пополняющий банковский депозит регулярно, желает рассчитать, какую прибыль он получит через несколько лет, он должен воспользоваться формулой наращения срочного аннуитета.

Кроме того, вычисление срочного аннуитета нужно для:

  • Сравнения нескольких кредитных предложений
  • Определения полной суммы кредита вместе с процентами

Будьте в курсе всех важных событий United Traders - подписывайтесь на наш

Аннуитет пренумерандо с ежегодными платежами Р в течение n лет, на которые начисляются проценты по сложной годовой ставке ic .

Очевидно, отличие от предыдущего случая состоит здесь в том, что период начисления процентов на каждый платеж увеличивается на один год, т. е. каждая наращенная сумма S k увеличивается в (1 + i c) раз. Следовательно, для всей суммы S n имеем S n =S(1 + i c).

Для коэффициента наращения аннуитета пренумерандо получаем следующее соотношение:

Для определения современных значений каждого платежа дисконтирование по заданной ставке i c проводится на один раз меньше, чем в случае аннуитета постнумерандо. Поэтому каждая современная величина А к будет больше в (1+i ) раз. Таким образом, А п = А(1 + i c ). А для коэффициента приведения a i , n п получаем

Пример 14. Найти наращенную сумму аннуитета и современную величину потока платежей, если в течение трёх лет доход, получаемый в начале года, будет составлять по 500 тыс.руб. Ставка дисконтирования – 6% годовых.

Решение.

В данном примерепоток платежей в течение трёх лет представляет собой постоянный аннуитет пренумерандо. Наращенная сумма такого аннуитета определится по формуле:

Коэффициент наращения может быть определён по таблице 3 наращенного значения аннуитета: k 0,06; 3 = 3,1836∙(1+0,06)=3,3746.

Наращенная сумма аннуитета составит:

S п =500∙3,3746=1687,3 тыс.руб.

Для проверки определим сумму наращенных сумм по годам.

Доход, полученный в первом году, через три года составит:

S 1 =500∙(1+0,06) 3 =500∙1,1910=595,5 тыс.руб.; доход, полученный во втором году, S 2 = 500∙(1+0,06) 2 = 500∙1,1236 = 561,8 тыс.руб. и доход, полученный в третьем году, S 3 = 500∙(1+0,06) 1 =500∙1,06 = 530 тыс.руб.

Общая наращенная сумма S п =S 1 п +S 2 п +S 3 п =595,5+561,8+530=1687,3 тыс.руб.

По формуле (1+ можем рассчитать современную величину аннуитета. Коэффициент приведения аннуитета определим по таблице 4. Для n =3 и i c =0,06 k 0,06; 3 =2,6730. Тогда k n =2,6730∙1,06=2,8334.

Современная величина аннуитета А п =500∙2,8334=1416,7 тыс.руб.

Можем проверить вычисления определив сумму современных величин всех платежей и начисленных процентов. Формула современных значений каждого платежа (А к ) примет вид:

Современные величины всех платежей будут равны:

тыс.руб.;

Тыс.руб.;

Сумма современных величин всех платежей будет равна.

В современном мире, где банковские продукты входят в жизнь любого человека, понимание сути финансовой математики и умение делать простые финансовые вычисления становится необходимым навыком. Но многие учебники и статьи по этой теме написаны сложным языком финансовых терминов и математических формул. Без терминов и формул, конечно, не обойтись. Однако объяснить суть вычислений можно простым языком, понятным любому человеку. Эта статья — продолжение статьи о дисконтировании денежных потоков. В ней речь пойдет об аннуитете (аннуитетных денежных потоках). Вечная рента, формула аннуитета — расчет текущей и будущей стоимости на простых примерах , объяснения для людей, а не для банкиров – об этом вы узнаете, прочитав данную статью.

Что такое аннуитет?

Услышав слово аннуитет, многие подумают о чем-то сверхсложном и недоступном для понимания. На самом деле всё просто, только слово иностранное.

Аннуитет – это серия одинаковых платежей через одинаковые промежутки времени. Этот термин представляет собой буквенный «перевод» английского слова annuity , что означает «fixed sum paid every year». Люди, владеющие английским языком, вспомнят еще слово «annual», которое в переводе означает «годовой». Оба этих слова происходят от латинского слова annuus – ежегодно. Таким образом, в самом слове аннуитет содержится указание на ежегодную периодичность платежей.

На временной линии (или шкале времени) аннуитетные денежные потоки можно изобразить, например, вот так (Рис. 1):
В настоящее же время аннуитетом называются не только серии одинаковых годовых платежей, но и любые последовательности одинаковых по сумме платежей вне зависимости от их периодичности. Это могут быть ежегодные, ежеквартальные, ежемесячные платежи. Главным остаётся одно: аннуитет – это несколько одинаковых платежей (денежных потоков) через одинаковые промежутки времени. Например, зарплата. Если ваша зарплата постоянна в течение года, то ежемесячный приток денежных средств в виде зарплаты является аннуитетом с ежемесячным периодом выплаты. Другой пример: если вы покупаете какую-то вещь в рассрочку, то ваши ежемесячные платежи банку тоже будут аннуитетом.

Пренумерандо и постнумерандо

Еще немного терминов. Аннуитеты бывают пренумерандо и постнумерандо. Это красивые и загадочные термины обозначают всего лишь момент платежа: пренумерандо означает платежи в начале каждого временного периода, постнумерандо — в конце его. Эти термины, пришедшие к нам, судя по всему из латыни, используются в учебниках или в официальных бумагах. Я же буду говорить по-русски: денежные потоки с выплатой в конце года или в начале года.

В данной статье рассматриваются примеры расчета простых аннуитетов, в которых период платежа и период начисления процентов равны друг другу. То есть если проценты начисляются, например, за год, то и выплаты будут ежегодными. Или проценты начисляются ежемесячно, и платежи тоже осуществляются ежемесячно. Существуют аннуитеты, в которых эти периоды не совпадают (периоды выплат и периоды начисления процентов), но это более сложные вычисления. Я не буду их затрагивать. Всем, кто хочет разобрать эту тему досконально, лучше обращаться к учебникам по финансовой математике.

Дисконтирование и наращение

Для начала вспомним о том, что такое дисконтирование и наращение. Более подробно об этом рассказано в предыдущей статье. В ней речь шла о дисконтировании и наращении единичного денежного потока, то есть одной денежной суммы. Продисконтировать – это значит рассчитать текущую стоимость будущего денежного потока. То есть, если вам надо накопить определенную сумму к какой-то дате в будущем, то, применив дисконтирование, вы сможете рассчитать, сколько надо положить в банк сегодня.

Наращение – это движение из сегодняшнего дня в завтрашний: расчет будущей стоимости тех денег, которые у вас есть сегодня. Если вы положите деньги на банковский счет, то, зная банковскую ставку, вы сможете рассчитать, сколько денег у вас накопится на счете в любой момент времени в будущем.

Наращение и дисконтирование, конечно, неприменимы, если вы храните деньги дома. Все эти расчеты справедливы только тогда, когда вы можете инвестировать ваши деньги: положить на банковский счет или купить долговые ценные бумаги.

Дисконтирование и наращение применяются не только к одному денежному потоку, но и к последовательности денежных потоков, при этом денежные суммы могут быть любыми по величине. Частным случаем таких множественных денежных потоков и являются аннуитеты .

Формула аннуитета

Аннуитетные денежные потоки тоже можно дисконтировать и наращивать, то есть определять их текущую и будущую стоимости.

Например, это необходимо, когда нам нужно выбрать между двумя предлагаемых нам вариантами получения денег. Не зная основных положений финансовой математики, можно прогадать и выбрать заведомо невыгодный для себя вариант. Чем и пользуются более осведомленные участники финансового рынка, а именно банки.

Расчет аннуитета — дисконтирование

ПРИМЕР 1. Возьмем абстрактный пример. Допустим, вам надо выбрать, что лучше:

  • (А) получить 100,000 долларов сегодня или
  • (Б) 5 раз по 25,000 долларов в конце каждого из следующих 5 лет.

В сумме 5 * 25,000 = 125,000, что вроде бы лучше, чем 100,000 долларов. Но так ли это? Ведь у денег есть еще и «временная» стоимость. Банковская ставка в данный момент в данной стране, допустим, равна 10%.

Вариант (Б) представляет собой простой вариант аннуитета. Только не все знают, что это именно так называется. Чтобы сравнить эти два варианта между собой (что выгоднее?), надо привести их к одному моменту времени, поскольку стоимость денег в разные моменты времени различна. В данном случае надо продисконтировать аннутитетный денежный поток (Б), т.е. рассчитать его сегодняшнюю стоимость. Если дисконтированная стоимость аннуитета будет больше, чем 100,000 долларов, значит, второй вариант выгоднее при данной ставке процента.

В предыдущей статье мы научились дисконтировать одиночную сумму. Те же вычисления можно сделать и в этот раз, только придется повторить их 5 раз.

На данной шкале времени кроме платежа в сумме 25,000 нанесены соответствующие каждому периоду коэффициенты дисконтирования. приведена в предыдущей статье про дисконтирование.

Если продисконтировать (то есть привести к текущему моменту) каждую сумму отдельно, то получится вот такая табличка:

  • 25,000*0,9091 = 22,727
  • 25,000*0,8264 = 20,661
  • 25,000*0,7513 = 18,783
  • 25,000*0,6830 = 17,075
  • 25,000*0,6209 = 15,523
  • Итого: 94,770

Здесь сумма платежа умножена на соответствующий каждому году коэффициент дисконтирования. В целом пять платежей по 25,000 в конце каждого года с учетом дисконтирования стоят 94,770, что несколько меньше, чем 100,000 сегодня. Следовательно, 100,000 сегодня при ставке 10% будет выгоднее, чем предложенный аннуитет 5 лет по 25,000.

Этот пример важен не только, чтобы еще раз продемонстрировать временную стоимость денег. Из таблицы становится ясно, как можно упростить вычисление дисконтированной стоимости аннуитета. Вместо того чтобы дисконтировать каждую сумму отдельно, можно сложить все коэффициенты дисконтирования и умножить только один раз:

25,000*(0,9091+0,8264+0,7513+0,6830+0,6209) что аналогично 25,000*3,7908 =94,770

Из этого примера легко вывести математическую формулу расчета дисконтированной стоимости аннуитета.

Сначала вспомним, как выглядит формула дисконтирования:

PV = FV*1/(1+R) n

Коэффициент дисконтирования равен 1/(1+R) n - это 0,9091, 0,8264 и т.д. в нашем примере.

Формула аннуитета (для расчета дисконтированной стоимости аннуитетных денежных потоков)

PV = FV*

Выражение в квадратных скобках можно представить математически, но вряд ли это нужно большинству людей. Это называется коэффициент аннуитета, или аннуитетный коэффициент дисконтирования, точное название не столь важно. В примере выше этот коэффициент равен 3,7908 .

Гораздо полезнее уметь пользоваться таблицами таких коэффициентов для расчета приведенной (дисконтированной) стоимости аннуитетного денежного потока. Такие таблицы позволяют быстро решать простые задачи на дисконтирование аннуитетов. Пример такой таблицы дисконтирования приведен ниже:

Если кому-то нужна точная формула аннуитета , точнее формула коэффициента дисконтирования аннуитета, то вот она:

Коэффициент дисконтирования аннуитета: 1/R — 1/(R*(1+R) n)

Дисконтированная стоимость аннуитета: PV= платеж умножить на коэффициент

Расчет аннуитета — наращение

В примере выше мы считали дисконтированную стоимость денежного потока. То есть приводили стоимость денежного потока к текущему моменту времени. Можно решать и обратную задачу – узнать будущую стоимость аннуитета (аннуитетного денежного потока).

ПРИМЕР 2. В нашем первом примере мы можем посчитать будущую стоимость обоих вариантов. Если перевести из области чистой математики в жизненную плоскость, то надо выбрать, что лучше:

  • (А) положить сегодня 100,000 долларов в банк под 10% годовых или
  • (Б) в конце каждого года делать взносы в сумме 25,000.

Для первого варианта можно воспользоваться (она есть в предыдущей статье).

Для варианта (А) будущая стоимость считается просто: $100,000 через 5 лет будут равны 100,000*1,6105 = $161,050

Для варианта (Б) ситуация несколько сложнее.
Мы хотим узнать, сколько будет у нас на счете через 5 лет, если мы будем откладывать 25,000 в конце каждого года. То есть мы сделаем последний взнос и сразу же посчитаем, сколько мы накопили. Чтобы не ошибиться, лучше подписать коэффициенты наращения, соответствующие каждому году, на шкалу времени. Первый платеж будет сделан в конце первого года, это значит, что через 5 лет по нему будут наращены проценты только за 4 года. Соответственно, по второму платежу мы получим проценты за 3 года, по третьему – за два года, по четвертому – за один год, и, наконец, положив деньги в пятый раз, проценты по последнему взносу еще нее возникнут (то есть надо будет умножить на 1,10 в нулевой степени!)

25,000*(1,1) 4 +25,000*(1,1) 3 + 25,000*(1,10) 2 + 25,000*(1,10) 1 + 25,000 (1,10) 0 что равно

25,000*1,4641 + 25,000*1,3310 +25,000*1,2100 +25,000*1,1000 + 25,000*1 = 25,000*6,1051 = 152,628

Будущая стоимость аннуитета (вариант Б) равняется $152,628, что существенно меньше, чем $161,050 (вариант А). Это означает, что выгоднее внести на банковский счет 100,000 долларов сегодня, чем делать взносы 25,000 в конце каждого из 5 следующих лет. Данный вывод справедлив для банковской ставки 10% годовых.

Для расчета будущей стоимости аннуитетных денежных потоков тоже имеются таблицы коэффициентов. В данном случае этой таблицей можно пользоваться для расчета аннуитетов с платежами в конце временного интервала (т.е. постнумерандо).

Для любителей математики формула аннуитета для расчета его будущей стоимости выглядит так:

Коэффициент наращения аннуитета: FV = платеж умножить на коэффициент ,

где коэффициент равен: [(1+R) n – 1]/R

Это был аннуитет с платежами в конце каждого года (постнумерандо ).

ПРИМЕР 3. Можно рассмотреть и другой пример. Сколько мы накопим на счете в банке, если будем вносить по 25,000 в начале каждого года, а не в конце? Это будет так называемый аннуитет пренумерандо, назовем его вариант В. Этот денежный поток можно изобразить на шкале времени таким образом:

Как видно из рисунка, платежи по 25,000 делаются в начале каждого годового периода. Например, вы решили класть на счет в банке по 25,000 каждый год 1 января. Первый платеж принесет нам проценты за 5 лет, второй — за 4 года, третий — за 3 года, четвертый — за 2 год и, наконец, платеж, сделанный в начале пятого года, принесет нам проценты за один год. я взяла из соответствующей таблицы, которую можно открыть по ссылке.

25,000*1,6105+25,000*1,4641 +25,000*1,3310 + 25,000*1,2100 + 25,000*1,1000 = 25,000* (1,6105+1,4641+1,3310+1,2100+1,1000) = 25,000*6,7156 = 167,890

Таким образом, если начинать вносить 25,000 каждый год в начале годового периода и делать это в течение 5 лет, то через 5 лет сумма на счете будет равна $167,890 . Этот вариант В выгодней, чем варианты А и Б, которые были рассмотрены раньше.

  • Вариант А — $100,000, внесенные сегодня, накопят на банковском счете через 5 лет только 161,050
  • Вариант Б — $25,000, внесенные на счет в конце каждого из 5 последующих лет, накопят через 5 лет только $152,628

Как видно из двух последних примеров, большое значение имеет момент, когда производятся платежи: в начале или в конце периода. Поэтому, если нужно рассчитать дисконтированную или будущую стоимость любых денежных потоков, желательно рисовать , на которой отметить суммы и коэффициенты, соответствующие каждому периоду.

Как эти расчеты могут пригодиться в жизни?

В примерах выше были разобраны абстрактные примеры аннуитетов. Но с аннуитетными денежными потоками мы встречаемся и в реальной жизни. Например, интересно будет рассчитать, сколько удастся накопить на сберегательном счете, если откладывать каждый месяц часть зарплаты. Подобным же образом можно будет рассчитать, скажем, дисконтированную стоимость всех платежей по автокредиту. Выплаты банку при покупке автомобиля (и не только автомобиля) в кредит представляют собой аннуитет. Его дисконтированная (приведенная к сегодняшнему дню) стоимость — это и будет стоимость приобретаемого автомобиля. Можно точно узнать, сколько вы переплачиваете при покупке машины в кредит в сравнении с вариантом покупки с уплатой полной суммы сразу. А также можно будет сравнить кредитные предложения разных банков. Единственная проблема в таких расчетах – выбрать правильную месячную ставку дисконтирования.

Вечная рента

Вечная рента — это аннуитет, платежи которого продолжаются в течение неограниченного срока. Другими словами – это серия одинаковых платежей, которая продолжается вечно. Такой вариант возможен, если, например, у вас есть вклад в банке, вы снимаете только ежегодные проценты, а основная сумма вклада остается нетронутой. Тогда, если ставка процента по вкладу не меняется, у вас будет так называемая .

В викторианскую эпоху все английские аристократы жили на проценты со своего капитала. Чем больший капитал лежал в банке, тем большие средства можно было потратить на жизнь и при этом не работать. Капитал переходил по наследству, и теоретически (если бы не было банкротств банков, войн и инфляции) так могло бы продолжаться вечно.

Будущая стоимость вечной ренты не имеет смысла, так как платежи продолжаются неограниченно долго. Однако текущая стоимость вечной ренты является конечной суммой, которую можно вычислить по формуле:

PV = платеж/R,

где R – это банковская ставка %, PV — текущая стоимость

Например, если хочется снимать со счета проценты в сумме 500,000 рублей в год, а годовая банковская ставка составляет 8%, то это значит, что сумма вклада на банковском счете должна быть равна:

500,000/0,08 = 6,250,000 рублей (PV).

В этом случае (если у банка не отберут лицензию или банк не обанкротится сам) можно снимать такие проценты постоянно на протяжении неограниченного периода времени. Единственное, что может нарушить такую идиллическую картину, — это инфляция, благодаря которой деньги обецениваются. Поэтому с течением времени снимаемые проценты будут приносить всё меньше материальных благ.

Философское отступление для тех, кто дочитал до этого места.

Чтобы рента была вечной, нужно сохранять капитал, с которого мы получаем эту ренту. Этот закон действует не только в финансовом мире. Человечество живет за счет природной ренты – оно пользуется ресурсами планеты, которые, к сожалению, исчерпаемы. Если брать от природы слишком много, природная рента иссякнет. Истощение земных ресурсов происходит на наших глазах.

При традиционном рыболовстве рыбу ловили понемногу, но это могло продолжаться вечно. Индустриальные города требуют рыбу определенного сорта и качества, для вылова которой применяется промышленный рыболовный флот. Крупные суда гонятся лишь за прибылью и не уважают океан. В настоящее время 80% мест промысловых районов Европы истощены. По расчетам ученых к 2050 году промышленное рыболовство сойдет на нет. Рыбная «рента» исчерпает себя. Много ли других ресурсов останется у человечества через 35-50 лет?

«Мир достаточно велик, чтобы удовлетворить нужды любого человека, но слишком мал, чтобы удовлетворить человеческую жадность» Махатма Ганди

Планета Земля – это наш единственный дом. Думаем ли мы об этом?

Рассчитать свой потенциальный доход по вкладу можно самостоятельно, не полагаясь на калькуляторы дохода, которые размещены на сайтах банковских учреждений. В этой статье на конкретных примерах показано, как рассчитать доход по вкладу с капитализацией процентов (ежеквартальной, ежемесячной, ежедневной, непрерывной) и как рассчитать эффективную ставку по вкладам с капитализацией.