Стоимостная мера риска.  Финансовый анализ и инвестиционная оценка предприятия. Альтернативные методики расчета риска

Стоимостная мера риска.  Финансовый анализ и инвестиционная оценка предприятия. Альтернативные методики расчета риска

АСТРОФИЗИКА, раздел астрономии, изучающий небесные тела, их системы и пространство между ними на основе анализа происходящих во Вселенной физических процессов и явлений. Астрофизика изучает небесные объекты любых масштабов, от космических пылинок до межгалактических структур и Вселенной в целом, все виды полей (гравитационные, магнитные, электромагнитного излучения) и геометрические свойства самого космического пространства. Цель астрофизических исследований - понимание строения, взаимодействия и эволюции небесных тел, их систем и Вселенной как целого. Диапазон физических параметров - плотности, температуры, давления, напряжённости магнитного поля и др., с которыми приходится иметь дело в астрофизике, - далеко превосходит достижимый в земных лабораториях. Поэтому многие астрофизические объекты выступают в роли уникальной физической лаборатории, предоставляющей возможности для изучения вещества и полей в экстремальных условиях. Это делает астрофизику неотъемлемой частью физики.

По объектам исследования в астрофизике выделяют физику Солнечной системы, гелиофизику (физику Солнца), физику звёзд и межзвёздной среды, галактическую (объект исследования - наша Галактика) и внегалактическую астрономию (объекты за пределами Галактики), космологию (изучение Вселенной как целого). Подавляющую часть информации в астрофизике получают путём регистрации и анализа электромагнитного излучения небесных тел. В зависимости от того, в каком спектральном диапазоне ведутся наблюдения, различают оптическую наблюдательную астрофизику (сложившуюся ещё в 19 веке), радиоастрономию (ставшую самостоятельным разделом астрофизики в середине 20 века), ультрафиолетовую и рентгеновскую астрономию (получившую широкое развитие с 1970-х годов), инфракрасную, субмиллиметровую и гамма-астрономию. Несколько особняком стоит астрофизика космической лучей (оформившаяся в 1960-е годы), нейтринная астрофизика (зародившаяся в 1970-е годы) и делающая первые шаги гравитационно-волновая астрономия. По методам исследования в астрофизике выделяют астрополяриметрию, астроспектроскопию и астрофотометрию. В 20 веке астрофизика заняла в астрономии доминирующее положение. Стремительное развитие астрофизики с начала 20 века было обусловлено, с одной стороны, общим техническим прогрессом, приведшим к радикальным изменениям в технике астрофизических наблюдений, с другой стороны, развитием физики. Особенно важное влияние на астрофизику оказало появление квантовой механики (1920-е годы) и ядерной физики (1930-1950-е годы). Постепенно возрастала и к началу 21 века стала важнейшей в астрофизике роль общей теории относительности. (Об истории развития астрофизики смотри в статье Астрономия.)

Солнечная система . Большая часть физической информации о Солнечной системе получена в ходе космических исследований. Были получены крупномасштабные изображения и выполнено картирование поверхностей Луны, планет земной группы, спутников планет и ряда астероидов. Прояснилась относительная роль эндогенных (вулканизм, тектонические перемещения) и экзогенных (метеоритная бомбардировка) факторов и процессов эрозии в формировании их рельефа. Открыт активный вулканизм на спутнике Юпитера Ио и выяснен его механизм (диссипация энергии приливных деформаций). Для Луны, Марса и астероида Эрос прямыми измерениями найден химический и минералогический состав их покрова. Установлен возраст доставленных на Землю лунных пород (до 4,5 миллиардов лет). Детально определён химический состав, изучено строение, общая циркуляция и динамика атмосфер планет. При этом проводились прямые измерения в атмосферах Венеры и Юпитера со спускаемых аппаратов, на Марсе измерения неоднократно велись с его поверхности. Возникло новое научное направление - климатология планет. На Марсе обнаружены большие количества водяного льда. Имеются убедительные указания на присутствие на планете в прошлом значительных количеств жидкой воды. С космических аппаратов измерены магнитные поля планет и изучена их структура. Строение магнитосфер планет с магнитным полем (Меркурий, Земля, планеты-гиганты) оказалось сложным, особенно у Юпитера. У Земли и планет-гигантов открыты радиационные пояса, самые мощные - у Юпитера. Значительно уточнены представления о внутреннем строении планет. Одной из ключевых проблем физики Солнечной системы остаётся проблема её происхождения. Общепринятая точка зрения состоит в том, что планеты сформировались около 5 миллиардов лет назад, вскоре после рождения Солнца, из окружавшего его газово-пылевого диска.

Физика Солнца . Специфика исследований Солнца определяется его близостью к нам. Отсюда - большие потоки излучения и возможность наблюдения явлений, развивающихся на Солнце на малых пространственных масштабах, вплоть до 100 км. Кроме того, прямому исследованию доступно вещество солнечного ветра и частицы солнечных космических лучей. Большинство гелиофизических исследований имеет прикладное значение из-за прямого воздействия событий на Солнце на биосферу Земли, в том числе на здоровье людей и их технологическую деятельность (радиосвязь, космонавтика и др.).

То, что мы видим как «поверхность» Солнца, - так называемая фотосфера, - это слои солнечной атмосферы с температурой 5000- 6000 К. По интенсивностям линий поглощения в спектре Солнца детально изучен химический состав фотосферы, а по доплеровским смещениям линий - движение газа в ней. В фотосфере наблюдаются различные структурные образования, в том числе солнечные пятна. В наружных слоях солнечной атмосферы - хромосфере и особенно в короне — определяющую роль играет магнитное поле, управляющее движением солнечной плазмы. Эти слои солнечной атмосферы крайне неоднородны и динамичны, в них имеются различные образования (протуберанцы, магнитные петли, корональные дыры и др.), меняющиеся день ото дня, иногда происходят взрывы, сопровождающиеся перестройкой магнитного поля (хромосферные вспышки, эруптивные протуберанцы). Мониторинг солнечной активности, так называемая служба Солнца, зародился ещё в 19 веке. В середине 20 века к оптическим наблюдениям добавились систематические измерения радиоизлучения Солнца, а затем и его ультрафиолетового и рентгеновского излучения с борта космических аппаратов.

С 1970-х годов начаты измерения потока нейтрино, приходящих непосредственно из недр Солнца и рождающихся при идущих там термоядерных реакциях. В 2003 году надёжно установлено, что полный поток солнечных нейтрино согласуется с предсказанным теоретически по модели строения Солнца. Одновременно эти измерения позволили доказать, что масса покоя нейтрино отлична от нуля - факт, важный для физики элементарных частиц. Нейтринные эксперименты доказали правильность основных представлений о ядерных реакциях как источнике энергии Солнца (и звёзд) и, более того, позволили измерить температуру в центре Солнца с погрешностью в несколько процентов. Исследования колебаний и волн, распространяющихся по «поверхности» Солнца (гелиосейсмология), позволили измерить основные физические характеристики недр Солнца и полностью подтвердили теоретическую модель.

Физика звёзд - один из важнейших разделов астрофизики. Она развивалась в двух направлениях - изучение строения наружных слоёв звезды, из которых излучение выходит непосредственно (звёздные атмосферы), и исследование звёздных недр и происходящих там процессов, определяющих строение и эволюцию звезды как целого. Изучение звёздных атмосфер - это фактически интерпретация звёздных спектров. В 1-й половине 20 века сложилась эмпирическая двумерная классификация звёздных спектров. Создание последовательной теории звёздных спектров стало возможным лишь с развитием квантовой механики, позволившей понять физику элементарных процессов взаимодействия излучения и вещества. Один из важнейших фактов, установленных при изучении звёздных спектров, - сходство химического состава атмосфер большинства нормальных звёзд диска Галактики с химическим составом атмосферы Солнца [водород около 70% по массе, гелий 27%, все остальные элементы, вместе взятые (так называемые тяжёлые), не более 3%]. У звёзд сферической составляющей нашей Галактики содержание тяжёлых элементов в десятки и сотни раз ниже солнечного. Этот факт, обнаруженный в 1940-50-е годы, нашёл объяснение в созданной в 1950-60-х годах теории происхождения химических элементов в звёздах, согласно которой все химические элементы, кроме водорода и частично гелия и лития, были синтезированы в недрах нескольких поколений звёзд (смотри Нуклеосинтез).

Наблюдательной основой изучения строения и эволюции звёзд служат статистические зависимости между их основными глобальными параметрами - массами, светимостями и радиусами (смотри Герцшпрунга - Рессела диаграмма, Масса светимость зависимость). Массы звёзд находятся по третьему закону Кенлсра из изучения движения двойных звёзд. Оказалось, что они заключены в интервале от 0,1 до 100 масс Солнца. С физической точки зрения отличительные особенности нормальных звёзд - это идущие в их недрах термоядерные реакции превращения Н в Не, а после его выгорания - синтез С и О из Не и так далее, вплоть до железа 56Fe. Конкретные цепочки реакций ядерного горения водорода, обеспечивающих энерговыделение в звёздах и на Солнце на протяжении большей части их жизни, были указаны в конце 1930-х годов (Х. Бете, К. Вайцзеккер). Анализ показал, что звёзды с массами больше ≈100 масс Солнца были бы не устойчивы, поэтому их в природе нет. Тела с массами от ≈0,1 до ≈0,01 массы Солнца представляют собой объекты, промежуточные между звёздами и планетами, - так называемые субзвёзды или бурые карлики (обнаружены в 1990-е годы). Температуры в них недостаточны для синтеза гелия, однако в их недрах происходит выгорание тяжёлого изотопа водорода - дейтерия, а также лития. Если же масса меньше ≈0,01 массы Солнца (точнее, ≤13 масс Юпитера), то термоядерные реакции не идут совсем - это уже планета.

Конечным продуктом эволюции звёзд с начальными массами ≤ 8 масс Солнца являются компактные белые карлики (размером с земной шар). Массивные звёзды проходят все этапы ядерного горения вплоть до образования железа, после чего их механическое равновесие нарушается, происходит грандиозный взрыв, наблюдаемый как вспышка сверхновой звезды. При вспышках сверхновых рождаются нейтронные звёзды (радиусом около 10 км), на возможность существования которых указал Л. Д. Ландау в 1932 году. Они были обнаружены во 2-й половине 1960-х годов (Дж. Белл, Э. Хьюиш) в виде пульсаров точечных источников радиоизлучения периодически меняющейся интенсивности. Самые массивные звёзды, вспыхивая в конце жизни как сверхновые, по-видимому, рождают чёрные дыры - объекты, не находящиеся в равновесии и продолжающие неограниченное сжатие. К началу 21 века в Галактике обнаружено около 20 объектов, являющихся, судя по многих признакам, чёрными дырами звёздных масс. Выброс вещества при вспышках сверхновых приводит к обобщению межзвёздной среды тяжёлыми элементами и тем самым постепенно меняет химический состав строительного материала для последующих поколений звёзд.

Создание последовательной теории строения и эволюции звёзд - одно из крупных достижений естествознания 20 века. В астрономии теория звёздной эволюции сыграла роль, сопоставимую с ролью дарвиновской теории эволюции в биологии.

Физика межзвёздной среды . Межзвёздная среда состоит из нескольких основных компонентов - газа, пыли (около 1% от массы газа), частиц высокой энергии - космических лучей, магнитных полей и электромагнитного излучения. В оптическом диапазоне межзвёздное вещество проявляется в виде газовых и пылевых туманностей. Космическая пыль вызывает также межзвёздное поглощение. Теория свечения газовых туманностей под действием ультрафиолетового излучения погружённых в них горячих звёзд стала основой определения температур, плотностей и химического состава туманностей. Колоссальный прогресс в исследовании межзвёздной среды вызвало развитие радиоастрономии. Излучение нейтрального водорода в линии с длиной волны 21 см (открыто в 1950-е годы) дало возможность изучить распределение и движение нейтрального водорода в нашей, а затем и в других галактиках. Радиоспектроскопия межзвёздной среды позволила открыть присутствие в ней более сотни видов молекул, в том числе многоатомных. Были обнаружены мощные природные мазеры, работающие на молекулах ОН, Н 2 О и др. Внеатмосферные исследования в ультрафиолетовом диапазоне привели в 1970-е годы к открытию в Галактике нескольких тысяч гигантских облаков молекулярного водорода с массами порядка миллиона масс Солнца. Рентгеновские наблюдения дали информацию о наиболее горячем компоненте межзвёздной среды и позволили (наряду с наблюдениями в радиодиапазоне) детально исследовать большое число остатков вспышек сверхновых звёзд. Одним из центральных вопросов физики межзвёздной среды к концу 20 века стало изучение идущих в ней процессов рождения звёзд. Установлено, что звездообразование происходит в гигантских массивных газово-пылевых комплексах вследствие возникновения в них гравитационной неустойчивости (критерий которой найден Дж. Х. Джинсом ещё в 1902 году). Исследование процесса звездообразования в нашей и других галактиках - активно развивающаяся область астрофизики.

Физика Галактики . Представление о нашей Галактике как о типичной спиральной галактике сложилось постепенно, начиная с 1920-х годов, когда впервые было установлено (Х. Шепли), что Солнце находится далеко от центра нашей звёздной системы. По современным данным, расстояние от Солнца до центра Галактики - 8 кпк, или 27 тысяч световых лет, период его обращения (галактический год) - около 230 миллионов лет. Большая часть непосредственно наблюдаемого (светящегося) вещества в Галактике сосредоточена в звёздах, число которых порядка 1011. Масса межзвёздной среды составляет около 10% от суммарной массы звёзд. В Галактике выделяют три составляющие - диск (звёздное население I плюс тонкий газово-пылевой слой межзвёздного вещества), сферическая составляющая (звёздное население II) и тёмное гало (тела и/или частицы неизвестной природы, присутствие которых выявляется только по их гравитации). В диске Галактики рождение звёзд продолжается и в наше время (темп звездообразования около 1 массы Солнца в год). Родившиеся в газово-пылевых комплексах звёзды образуют рассеянные звёздные скопления и звёздные ассоциации. К сферической составляющей Галактики относится также около 150 шаровых звёздных скоплений. Изучение звёздных скоплений в 1930-50-е годы дало прочную наблюдательную основу и одновременно стало тестом теории эволюции звёзд. В гало Галактики, существование которого было установлено в конце 20 века, сосредоточена большая часть массы Галактики. Что представляет собой вещество гало - неизвестно. Оно не светится ни в каком диапазоне и потому получило название тёмной материи. Выяснение её природы - одна из важных нерешённых задач астрофизики. В самом центре Галактики находится массивное (около 3-106 масс Солнца) компактное тело, по общепринятой точке зрения, - чёрная дыра.

Физика внегалактических объектов . Галактики трёх основных морфологических типов - эллиптические, спиральные и неправильные - сильно отличаются по содержанию в них межзвёздного газа (меньше всего его в эллиптических, больше всего в неправильных галактиках) и по интенсивности процесса звездообразования в них. В эволюции галактик важную роль играет их взаимодействие, столкновения и даже слияния (смотри Взаимодействующие галактики). Изучение морфологии галактик в сопоставлении с составом их звёздного населения - одна из активно развивающихся областей внегалактических исследований. Важное открытие сделано при изучении вращения спиральных галактик по эффекту Доплера (как в оптическом диапазоне, так и по радиолинии нейтрального водорода с длиной волны 21 см). Оказалось, что в галактиках суммарная масса звёзд составляет всего несколько десятков процентов от их полных масс, остальное - это тёмная материя, образующая вокруг видимого тела галактики обширное гало, значительно превышающее размеры звёздного диска. Существование тёмной материи предполагалось давно (по измерениям скоростей движений галактик в скоплениях) и в конце 20 века подтверждено ещё несколькими методами, в частности, наблюдениями гравитационного линзирования излучения далёких галактик и квазаров.

Давняя задача исследования галактик - объяснение природы спиральных ветвей. Считается, что они представляют собой волны плотности, перемещающиеся по вращающемуся звёздному диску галактики. В них идёт активный процесс звездообразования. Одна из актуальных проблем астрофизики - изучение процессов, происходящих в ядрах галактик. В ядрах эллиптических и спиральных галактик находятся сверхмассивные (10 6 - 3?10 9 масс Солнца) компактные объекты, по всем признакам - чёрные дыры. В непосредственной близости от них наблюдаются газ и звёзды, движущиеся со скоростями до тысяч километров в секунду. При захвате газа и звёзд чёрными дырами происходит выделение колоссальной гравитационной энергии, перерабатывающейся в излучение всех спектральных диапазонов - от радио- до рентгеновского. Если светимость активного ядра галактики превышает светимость целой галактики на 2-3 порядка, то объект называют квазаром, при меньшем энерговыделении говорят просто об активной галактике того или иного типа (смотри Активные ядра галактик).

Галактики распределены в пространстве неравномерно, образуя группы и скопления (с числом членов от нескольких до тысяч), а также гигантские пустоты - войды размером в десятки мегапарсек. Наша Галактика находится на периферии богатого скопления галактик, на расстоянии около 15 Мпк (около 50 миллионов световых лет) от его центра. В межгалактическом пространстве в скоплениях галактик имеется крайне разреженный (1 атом на несколько кубических метров) горячий (с температурой 107-108 К) газ, который был обнаружен по его рентгеновскому излучению. Масса межгалактического газа превосходит суммарную массу звёзд, имеющихся во всех галактиках скопления. Неоднородность в распределении галактик сохраняется до масштабов около 100 Мпк, на больших масштабах Вселенная в среднем однородна.

Космология . В основе космологии лежит общая теория относительности А. Эйнштейна (1915 год). Исходя из открытых им фундаментальных уравнений, связывающих распределение материи с геометрическими свойствами пространства и ходом времени, в 1917 году Эйнштейн построил статическую модель Вселенной. В 1922 году А. А. Фридман обнаружил, что уравнения Эйнштейна имеют решения, которые описывают расширяющийся со временем мир. Так в науку была введена парадигма эволюционирующей Вселенной. В 1929 году Э. Хаббл установил, что любые две галактики, разделённые достаточно большим расстоянием, удаляются друг от друга со скоростью, пропорциональной этому расстоянию (Хаббла закон). Из-за описываемого законом Хаббла общего расширения пространства линии в спектрах далёких объектов - галактик и квазаров - смещены в красную сторону за счёт эффекта Доплера. Таким образом, теория расширяющейся Вселенной получила наблюдательное подтверждение. В 1946 году Дж. Гамов выдвинул концепцию горячей Вселенной, согласно которой на ранних этапах расширения, вскоре после своего рождения (так называемый Большой взрыв), Вселенная была очень горячей и в ней излучение доминировало над веществом. При расширении температура падала, и с некоторого момента пространство стало для излучения практически прозрачным. Излучение, сохранившееся от этого момента эволюции (микроволновое фоновое излучение, или реликтовое излучение), равномерно заполняет всю Вселенную до сих пор. Из-за космологического расширения температура этого излучения продолжает падать. В настоящее время она составляет 2,7 К. Реликтовое излучение было открыто в 1965 году (А. Пензиас, Р. Вильсон). В 1992 году в распределении интенсивности реликтового излучения по небу были открыты предсказанные теоретически небольшие флуктуации, несущие информацию о ранней Вселенной. Их изучение дало важные для космологии результаты. В 1998 году исследование вспышек сверхновых в предельно далёких галактиках привело к неожиданному открытию, вызвавшему кардинальный пересмотр представлений о динамике расширения Вселенной и о роли в ней обычной материи. Было установлено, что в настоящее время Вселенная расширяется ускоренно. Агент, вызывающий это ускорение, получил название тёмной энергии. В отличие от обычного вещества, она создаёт отрицательное давление. Природа тёмной энергии пока неизвестна. В массу Вселенной около 70% вносит тёмная энергия, 27% - тёмная материя неизвестной природы и всего 3% обеспечивается обычным (барионным) веществом, из которых лишь около 0,5% дают звёзды. Возраст Вселенной - 14 миллиардов лет. К началу 21 века космология стала наиболее быстро развивающейся областью астрофизики.

Лит.: Аллен К. У. Астрофизические величины. М., 1977; Соболев В. В. Курс теоретической астрофизики. М., 1985; Физика космоса: Маленькая энциклопедия. 2-е изд. М., 1986; Carroll В. W., Ostlie D. А. An introduction to modern astrophysics. Reading (Mass.), 1996; Padmanabhan Т. Theoretical astrophysics: In 3 vol. Camb., 2000-2002.

Астрофизика I Астрофи́зика

раздел астрономии, изучающий физические явления, происходящие в небесных телах, их системах и в космическом пространстве, а также химические процессы в них. А. включает разработку методов получения информации о физических явлениях во Вселенной, сбор этой информации (главным образом путём астрономических наблюдений), её научную обработку и теоретическое обобщение. Теоретическая А., занимаясь обобщением и объяснением фактических данных, полученных наблюдательной А., пользуется законами и методами теоретической физики. Совокупность методов наблюдательной А. часто называют практической А.

В отличие от физики, в основе которой лежит эксперимент, связанный с произвольным изменением условий протекания явления, А. основывается главным образом на наблюдениях, когда исследователь не имеет возможности влиять на ход физического процесса. Однако при изучении того или иного явления обычно представляется возможность наблюдать его на многих небесных объектах при различных условиях, так что в конечном счёте Л. оказывается в не менее благоприятном положении, чем экспериментальная физика. Во многих случаях условия, в которых находится вещество в небесных телах и системах, намного отличаются от доступных современным физическим лабораториям (сверхвысокие и сверхнизкие плотности, высокие температуры и т. п.). Благодаря этому астрофизические исследования нередко приводят к открытию новых физических закономерностей.

Исторически сложилось разделение наблюдательной А. на отдельные дисциплины по двум признакам: по методам наблюдения и по объектам наблюдения. Различным методам посвящены такие дисциплины, как Астрофотометрия , Астроспектроскопия , Астроспектрофотометрия , Астрополяриметрия , Астроколориметрия , Рентгеновская астрономия , Гамма-астрономия и др. Примером дисциплин, выделенных по объекту исследования, могут служить: физика Солнца (См. Солнце), физика Планет , физика туманностей галактических (См. Туманности галактические), физика звёзд и др.

По мере развития техники космических полётов в астрофизических исследованиях всё большую роль играет Внеатмосферная астрономия , основанная на наблюдениях с помощью инструментов, размещенных на искусственных спутниках Земли и космических зондах. С развитием космонавтики появилась возможность устанавливать такие инструменты также и на других небесных телах (прежде всего на Луне). На этой же основе предполагается развитие экспериментальной астрономии. На грани наблюдательной и экспериментальной астрономии находятся Радиолокационная астрономия (радиолокация метеоров, Луны, ближайших к Земле планет), а также лазерная астрономия, получающие информацию о небесных телах, используемую в А., путём их искусственного освещения пучками электромагнитных волн.

Астрофизические открытия, вскрывающие в природе новые формы существования материи и новые формы её естественные организации, являются блестящим подтверждением фундаментального тезиса диалектического материализма о качественной неисчерпаемости материи.

Ведущими центрами астрофизических исследований в СССР являются: Крымская астрофизическая обсерватория АН СССР, Астрономическая обсерватория Пулковская АН СССР Главная, Абастуманская астрофизическая обсерватория АН Грузинской ССР и Бюраканская астрофизическая обсерватория АН Армянской ССР. Важные работы в области А. ведутся также в Московском и Ленинградском университетах. Быстро развиваются астрофизические исследования в астрономических учреждениях в Алма-Ате, Душанбе, Шемахе, Риге. Возродившаяся в последние десятилетия одна из старейших обсерваторий нашей страны в Тарту (ныне в Тыравере) в основном также занимается астрофизическими исследованиями. Работы по А. ведутся также на Серпуховской радиоастрономической обсерватории (См. Серпуховская радиоастрономическая обсерватория) и на Зименковской радиоастрономической обсерватории (См. Зименковская радиоастрономическая обсерватория). Среди иностранных научных учреждений, ведущих астрофизические исследования, видное место занимают: Маунт-Паломарская астрономическая обсерватория и Ликская астрономическая обсерватория в США, обсерватория Сен-Мишель и во Франции, в Чехословакии, астрономическая обсерватория Конколи в Венгрии, радиоастрономические обсерватории в Кембридже и Джодрелл-Банке в Великобритании и в Парксе в Австралии и др.

Историческая справка. Уже во 2 в. до н. э. звёзды, видимые невооруженным глазом, были в зависимости от их блеска разделены на 6 классов (звёздные величины (См. Звёздная величина)). По существу это разделение, позже уточнённое и распространённое на более слабые звёзды и на невизуальные способы приёма излучений, легло в основу современной астрофотометрии. Ещё до изобретения телескопа были описаны солнечные протуберанцы в русских летописях (12 в.), открыты новые и сверхновые звёзды в Галактике (в частности, тщательные наблюдения Сверхновой 1572 в Кассиопее были произведены датчанином Тихо Браге и пражским астрономом Т. Гайеком), яркие кометы. Изобретение телескопа позволило получить ценные сведения о Солнце, Луне и планетах. Обнаружение фаз Венеры Г. Галилеем и атмосферы Венеры М. В. Ломоносовым имело огромное значение для понимания природы планет. Детальные исследования тёмных линий в спектре Солнца немецким учёным И. Фраунгофером (1814) явились первым шагом в получении массовой спектральной информации о небесных телах. Её ценность была признана после работ Г. Кирхгофа и Р. Бунзена (Германия) по спектральному анализу (1859-62). С начала 90-х гг. 19 в. большинство крупнейших телескопов мира было снабжено щелевыми спектрографами для изучения спектров звёзд с высокой дисперсией, и фотографирование спектров звёзд и других небесных светил составило основную часть программы наблюдений с помощью этих инструментов. Этому посвятили свои работы пионеры современной астрофизики: русский астроном А. А. Белопольский, Г. Фогель (Германия), У. Кэмпбелл и Э. Пикеринг (США) и др. В результате их исследований были определены лучевые скорости (См. Лучевая скорость) многих звёзд, открыты спектрально-двойные звёзды, найдено изменение лучевых скоростей цефеид (См. Цефеиды), заложены основы спектральной классификации звёзд (См. Спектральная классификация звёзд).

Быстрое развитие лабораторной спектроскопии и теории спектров атомов и ионов на основе квантовой механики привело в 1-й половине 20 в. к возможности интерпретации звёздных спектров и к развитию на этой основе физики звёзд и в первую очередь - физики звёздных атмосфер. Основы теории ионизации в звёздных атмосферах заложил в 1-й четверти 20 в. индийский физик М. Саха.

С начала 2-й четверти 20 в. в результате отождествления запрещенных линий в спектрах газовых туманностей и расширения исследований межзвёздного поглощения, впервые изученного русским астрономом В. Я. Струве (1847), начала быстро развиваться физика межзвёздного вещества, а методы радиоастрономии открыли для этой области А. неограниченные возможности (наблюдения радиоизлучения нейтрального водорода с длиной волны 21 см и др.).

Уже в 20-х гг. 20 в., благодаря работам Э. Хаббла (США), была окончательно доказана внегалактическая природа спиральных туманностей. Эти небесные объекты, Галактики , представляющие собой гигантские конгломераты звёзд и межзвёздного вещества, изучают как оптическими, так и радиоастрономическими методами; оба метода дают одинаково важную и взаимно дополняющую информацию, хотя последний и уступает первому в отношении количества информации. С конца 40-х гг. 20 в. для фотографирования неба стали применять крупные рефлекторы, обладающие большим полем зрения (телескопы Шмидта и Максутова), благодаря чему появилась возможность массового изучения галактик и их скоплений. Исследования, выполненные на Маунт-Паломарской обсерватории в США (В. Бааде, Цвикки, Сандидж), на Бюраканской астрофизической обсерватории АН Армянской ССР (В. А. Амбарцумян, Б. Е. Маркарян и др.) и в Астрономическом институте им. П. К. Штернберга в Москве (Б. А. Воронцов-Вельяминов), а также наблюдения на радиоастрономических обсерваториях в Кембридже (Великобритания) и в Парксе (Австралия) вскрыли огромное разнообразие форм галактик и проходящих в них физических процессов. Открытие во 2-й половине 50-х гг. грандиозных взрывных процессов, являющихся проявлением активности ядер галактик, поставило перед теоретическую А. задачу их объяснения. В 1-й половине 60-х гг. были открыты квазизвёздные радиоисточники (квазары). Изучение квазаров и ядер галактик показало, что и те и другие по своей природе в корне отличаются от звёзд, планет и межзвёздной пыли или газа. Новые явления, наблюдаемые в них, настолько своеобразны, что к ним не всегда применимы сложившиеся физические представления. Благодаря этим и ряду других открытий А. переживает, по существу, революцию, по своему значению сравнимую с революцией в астрономии времён Коперника - Галилея - Кеплера - Ньютона и с тем переворотом, который пережила физика в 1-й трети 20 в. Развитие внеатмосферной астрономии значительно обогатило методы планетной астрономии, фотографирование обратной стороны Луны (1959, СССР), первый запуск научной аппаратуры на Луну и получение снимков лунных пейзажей (1966, С1ССР), снимки Марса с близкого расстояния (1965, США), достижение советским космическим зондом нижних слоев атмосферы Венеры (1967, СССР), высадка космонавтов на Луну и начало прямых исследований лунного грунта (1969, США) - таковы первые выдающиеся результаты в этой области астрономии.

Исследования тел Солнечной системы . Среди больших планет наиболее полно изучена Земля, являющаяся предметом исследований геофизики (См. Геофизика). Сведения об остальных восьми планетах до середины 20 в. оставались относительно скудными. Однако развитие исследований, опирающихся на наблюдения с помощью космических зондов, позволит уже в ближайшем будущем изменить это положение. При решении различных задач, связанных с изучением строения и состава планетных атмосфер наземными методами, в А. часто применяют те же наблюдательные и теоретические методы, что и в геофизике (в частности, методы изучения верхних слоев земной атмосферы). Особенный интерес представляют спектральные исследования планет, обладающих атмосферным покровом. В результате таких исследований установлены коренные различия в составе атмосфер планет. В частности, выяснилось, что в атмосфере Юпитера основной составляющей является аммиак, в атмосфере Венеры - углекислый газ, в то время как на Земле преобладают молекулярные азот и кислород. Обнаружение больших кратероподобных образований на Марсе (с помощью космических зондов «Маринер», США) ставит задачу создания общей теории возникновения рельефа на планетах и Луне. Существуют две противоположные теории происхождения кратеров на Луне и Марсе. Одна приписывает их образование вулканизму, другая - удару гигантских метеоритов. В результате открытия новых свидетельств в пользу вулканизма на Луне первая из них находит всё больше сторонников. Сведения об особенностях рельефа планет, а также о законах их вращения и некоторые др. доставляют радиолокационные наблюдения [В. А. Котельников (СССР) и др.].

Большинство спутников планет, так же как и все малые планеты, не имеет атмосфер, т. к. сила тяжести на их поверхности недостаточна для удержания газов на них. Малые же угловые размеры этих тел не позволяют изучать; детали их поверхностей. Поэтому единственная информация о физике этих тел основана на измерениях их интегральной отражательной способности в различных участках спектра. Изменения их блеска дают нам сведения об их вращении.

Большой интерес представляют собой явления, возникающие при приближении комет к Солнцу. В результате процессов сублимации, происходящих под воздействием солнечного излучения, из ядра кометы выделяются газы, образующие обширную голову кометы. Воздействие солнечного излучения и, по-видимому, солнечного ветра (См. Солнечный ветер) обусловливает образование хвоста, иногда достигающего миллионов километров в длину. Выделенные газы уходят в межпланетное пространство, вследствие чего при каждом приближении к Солнцу комета теряет значительную часть своей массы. В связи с этим кометы, особенно короткопериодические, рассматриваются как объекты, обладающие небольшой продолжительностью жизни, измеряемой тысячелетиями или даже столетиями (С. К. Всехсвятский и др.). Изучение происхождения и развития системы комет позволит сделать заключения, относящиеся к эволюции всей Солнечной системы.

Физика Солнца . Физические процессы, происходящие в Солнце, практически независимы от воздействия окружающей среды. Развитие Солнца, по крайней мере в нынешнюю эпоху, обусловлено его внутренними закономерностями. Выяснено, что внутри Солнца, так же, как и внутри всех звёзд, имеются источники тепловой энергии (ядерной природы), благодаря которым вещество Солнца (звёзд) нагревается до высокой температуры. Вследствие этого происходит испускание лучистой энергии наружу. Устанавливается равновесие между мощностью излучения Солнца (звёзд) и суммарной мощностью находящихся в нём источников тепловой энергии. В то же время проявления солнечной активности - излучения Солнца, испускание им потоков частиц с «вмороженными» в них магнитными полями - оказывает существенное влияние на развитие всех тел Солнечной системы. Объектами детального изучения являются различные образования в атмосфере Солнца: солнечные пятна, факелы, протуберанцы. Особый интерес представляют кратковременные хромосферные вспышки, длящиеся обычно несколько десятков минут и сопровождающиеся выделением значительного количества энергии. Корпускулярные потоки, связанные с активными областями Солнца, были изучены на Крымской астрофизической обсерватории АН СССР (Э. Р. Мустель). Во внешних слоях Солнца происходят постоянные изменения магнитных полей. Исследования, проведённые на этой же обсерватории (А. Б. Северный), позволили установить связь между вспышками и быстрыми изменениями в строении магнитного поля в данной части солнечной поверхности. Теоретические исследования показали, что перенос энергии в Солнце (так же, как и в звёздах) происходит главным образом путём испускания и поглощения излучения. На этом выводе построена теория лучистого равновесия Солнца, относящаяся как к внешним, так и к внутренним слоям Солнца.

Важнейший вопрос физики Солнца (так же, как и звёзд) - природа источников энергии. Энергия гравитационного сжатия оказалась недостаточной. Гипотеза, по которой источником солнечной энергии являются термоядерные реакции, с количеств, стороны может удовлетворительно объяснить излучение в течение миллиардов лет; тем не менее она нуждается в окончательной проверке. Полное выяснение природы источников солнечной и звёздной энергии будет иметь огромное значение для решения вопросов эволюции Солнца и звёзд.

Ввиду научного значения изучения физических процессов, происходящих в поверхностных слоях Солнца, и их влияния на верхние слои земной атмосферы, обсерватории многих стран объединились для систематического наблюдения этих процессов всеми доступными методами, организовав круглосуточную службу Солнца.

Физика звёзд . При изучении звёзд важную роль играют представления о строении Солнца, которые модифицируются таким образом, чтобы они удовлетворяли фотометрическим и особенно спектральным данным о звёздах. Вследствие разнообразного характера спектральной информации в конечном счёте удаётся найти однозначное решение этой проблемы. К настоящему времени классифицированы спектры более чем миллиона звёзд. Спектральная классификация звёзд была впервые разработана в начале 20 в. на Гарвардской обсерватории (США), а затем совершенствовалась и уточнялась. Главным признаком при этой классификации является наличие тех или иных спектральных линий и их относительные интенсивности.

Интересными объектами являются т. н. белые карлики, имеющие относительно высокую поверхностную температуру (от 7000° до 30 000°) и низкую светимость, во много раз меньшую светимости Солнца (см. Светимость звезды). Средние плотности некоторых белых карликов более чем в миллион раз превосходят плотность воды. В дальнейшем теоретически была установлена возможность конфигураций звёздных масс, состоящих из вырожденного газа нейтронов и даже пшеронов. Плотности таких конфигураций должны достигать 10 14 -10 15 плотности воды. Однако в течение многих лет такие конфигурации не смогли быть обнаружены. Лишь в 1967 были обнаружены Пульсары - объекты, испускающие с периодом переменности, измеряемым в одних случаях секундами, а в других - долями секунды. Имеются серьёзные основания предполагать, что это и есть сверхплотные конфигурации.

Особый интерес представляют Переменные звёзды , у которых меняется блеск и спектр. В тех случаях, когда такие изменения носят периодический или приблизительно периодический характер, они объясняются пульсациями, т. е. последовательными расширениями и сжатиями звезды. Более глубокие изменения происходят в нестационарных звёздах (См. Нестационарные звёзды), многие из которых являются молодыми звёздами, находящимися в процессе становления. Важное значение имеют звёзды типа RW Возничего, обнаруживающие совершенно неправильные изменения блеска и входящие в состав Т-ассоциаций (см. Звёздные ассоциации), возраст которых не превосходит 10 млн. лет. На более поздней стадии развития многие из этих звёзд, имея нормально постоянную яркость, переживают время от времени вспышки, длящиеся всего несколько мин, когда их яркость увеличивается до нескольких раз, а иногда (в коротковолновой части спектра) в сотни раз. Примером звезды, находящейся в этой стадии, является переменная звезда UV Кита. В то время как нормальное излучение звёзд имеет чисто тепловую природу, энергия, выделенная во время вспышек, имеет явно нетепловое происхождение. Ещё более грандиозные процессы выделения энергии происходят при вспышках новых звёзд (См. Новые звёзды) и сверхновых звёзд (См. Сверхновые звёзды). Во время вспышек сверхновых за промежуток времени порядка 1 мес выделяется 10 42 дж (10 49 эрг ). Во время вспышек новых и сверхновых звёзд происходит выбрасывание расширяющихся газовых оболочек. Вспышки так называемых новоподобных переменных звёзд, в частности звёзд типа SS Лебедя, занимают по масштабам промежуточное положение между вспышками новых звёзд и звёзд типа UV Кита.

Физика туманностей. Довольно подробно изучены физические процессы, происходящие в газовых туманностях, освещенных горячими звёздами. Эти процессы сводятся по существу к флуоресценции под влиянием ультрафиолетового излучения горячих звёзд. Что касается газовых туманностей, не освещенных горячими звёздами, то их исследование возможно благодаря тому, что они излучают радиолинию водорода с длиной волны 21 см. В большинстве газовых туманностей присутствует также и пылевое вещество, состоящее из твёрдых частиц. Если газопылевая туманность освещена звездой относительно низкой температуры, излучение которой не может вызвать флуоресценцию газа, то наблюдается отражение света освещающей звезды от пылевой компоненты туманности. В таких случаях спектр туманности является репродукцией спектра звезды. В Галактике наблюдаются также радиотуманности, испускающие непрерывный спектр в радиодиапазоне; такое излучение связано с торможением релятивистских электронов в магнитных полях - так называемое синхротронное излучение (исследования советского астронома И. С. Шкловского и др.). Эти туманности возникли вследствие вспышек сверхновых звёзд; таковы Крабовидная туманность и радиоисточник Кассиопея А. Продолжительность их жизни измеряется всего тысячами, а иногда даже только сотнями лет.

Физика внегалактических объектов. В начале изучения галактики рассматривались как механические конгломераты звёзд и туманностей. Поэтому обсуждались лишь вопросы их внутренней кинематики и динамики. Однако вскоре было выяснено, что существует определённая связь между формой галактик (эллиптическая, спиральная, неправильная) и классами входящих в них звёзд («звёздного населения»), в частности наличием в них молодых звёзд - голубых гигантов. В рукавах спиральных галактик наблюдаются большие неоднородности, О-ассоциации, представляющие собой системы, состоящие из молодых звёзд и туманностей. Их возникновение связано, по-видимому, с глубокими физическими процессами, при которых большие массы до-звёздного вещества превращаются в обычные звёзды. Изучение этих процессов является одной из труднейших нерешенных проблем А.

Начиная с середины 20 в. стала выявляться большая роль ядер галактик в их эволюции. Установлено существование различных форм активности ядер, в частности гигантские взрывы, при которых выбрасываются огромные облака релятивистских электронов. В результате таких взрывов обычные галактики превращаются в радиогалактики. Происходит также выбрасывание облаков и струй обычного газа. Все эти явления свидетельствуют о том, что в ядрах галактик происходят весьма глубокие процессы превращений вещества и энергии.

Открытие квазизвёздных источников радиоизлучения (квазаров), так же как квазизвёздных чисто оптических объектов, привело к обнаружению ещё более глубоких процессов. Прежде всего оказалось, что среди квазаров имеются объекты, которые испускают в 10 13 раз более мощное излучение, чем Солнце, и в сотни раз более яркое, чем сверхгигантские галактики. Квазары испытывают относительно быстрые изменения блеска, что говорит об их небольших диаметрах (непрерывный спектр излучается из объёма диаметром не более 0,2 парсек ). Во многих отношениях квазары схожи с наиболее активными ядрами галактик, только масштабы явлений в них больше. Массы квазаров неизвестны. Однако, рассматривая их как очень большие, изолированные ядра, можно принять, что они составляют 10 11 масс Солнца и больше.

Теоретическая астрофизика. Цель теоретической А. - объяснение изучаемых А. явлений на основе общих законов физики. При этом она пользуется как методами, уже разработанными в теоретической физике, так и специальными методами, разработанными для изучения явлений в небесных телах и связанными со специфическими свойствами этих тел. Поскольку вся информация об астрофизических процессах получается на основе регистрации достигающего нас излучения, то первая задача теоретической А. - прямое истолкование результатов наблюдений и составление на первом этапе внешней картины развёртывающегося процесса (например, наблюдения блеска и спектров новых звёзд удалось истолковать на основе представления о выбросе наружных слоев звезды в окружающее пространство). Однако конечная её цель - выяснение механизма и причин явления (в приведённом примере - причины взрыва, который приводит к выбрасыванию оболочки). Основным отличием процессов, изучаемых А., в большинстве случаев является существенная роль взаимодействия вещества с излучением. Поэтому теоретическая А., наряду с решением конкретных задач, разрабатывает также общие методы исследования этого взаимодействия. В то время, как теоретическая физика интересуется элементарными процессами этого типа, А. изучает результаты многократного и сложного взаимодействия в больших системах; так, теория переноса излучения в материальной среде, которая применяется и в других разделах физики, достигла большого совершенства именно в А. Успешное развитие в трудах советских астрономов В. В. Соболева и др. теории переноса излучения в спектр, линиях позволило установить точные закономерности образования в звёздных атмосферах линий поглощения и линий излучения. Таким образом стала возможной количественная интерпретация звёздных спектров. Разработаны также общие методы вычисления состояний равновесия звёздных масс. Большие работы по конфигурациям равновесия газовых звёзд выполнены М. Шварцшильдом (США) и А. Г. Масевич (СССР). Теория вырожденных конфигураций, в которой учитывается вырождение электронного газа, была разработана во 2-й четверти 20 в. Э. Милном (Великобритания) и С. Чандрасекаром (Индия). В случае сверхплотных конфигураций (в которых вырожден уже барионный газ) расчёты следует вести на основе общей теории относительности. Эти вопросы так же, как и теоретические исследования, касающиеся процесса расширения Вселенной в целом, составляют новую отрасль теоретической А., получившую название релятивистской астрофизики (См. Релятивистская астрофизика).

Результаты астрофизических исследований публикуются главным образом в трудах обсерваторий, а также в специальных журналах, среди которых основные: «Астрономический журнал» (М., с 1924), «Астрофизика» (Ер., с 1965), «Astrophysical Journal» (Chi., с 1895), «Monthly Notices of the Royal Astronomical Society» (L., с 1827), «Annales d"astrophysique» (P., с 1938-68), «Zeitschrift fur Astrophysik» (В., с 1930-44) и др.

Лит.: Курс астрофизики и звездной астрономии, т. 1-3, М.-Л., 1951-64; Соболев В. В., Курс теоретической астрофизики, М., 1967; Амбарцумян В. А., Проблемы эволюции Вселенной, Ер., 1968; Развитие астрономии в СССР, М., 1967; Струве О. В., Зебергс В., Астрономия 20 в., пер. с англ., М., 1968; Зельдович Я. Б. и Новиков И. Д., Релятивистская астрофизика, М., 1968.

В. А. Амбарцумян.

II Астрофи́зика («Астрофи́зика»,)

научный журнал Академии наук Армянской ССР. Издается в Ереване. Основан в 1965, выходит 4 раза в год. Публикует статьи по физике звёзд, туманностей и межзвёздной среды, по звёздной и внегалактической астрономии и по смежным с астрофизикой вопросам.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Астрономия — это наука, которая изучает небесные тела, их движение, строение, а также системы, образованные ими. Это древнейшая область знания: истоки астрономии теряются в глубине веков.

Можно сказать, что она эволюционировала вместе с человечеством. И сегодня астрономия не стоит на месте. Пользуясь новейшими технологиями, ученые постоянно уточняют и дополняют уже сложившиеся теории. Самые громкие открытия последних лет часто бывали связаны с теми явлениями, что изучают астрофизики. На полную мощность используя достижения в области техники, астрономы неизбежно сталкиваются с ограниченностью человеческого разума. Астрофизика — раздел астрономии, пожалуй, чаще других сталкивающийся с фактами, которые пока невозможно объяснить. Ученые, работающие под ее знаменем, пытаясь найти ответы на все более сложные вопросы, тем самым стимулируют технический прогресс. О том, что изучают астрофизики, что им уже удалось узнать и какие загадки Вселенная им предлагает сегодня, и пойдет речь ниже.

Особенности

Астрофизика занимается определением физических характеристик и их взаимодействия. В своих теориях она опирается на знания о законах природы, накопленные наукой в процессе изучения свойств материи на Земле.
Ученые-астрофизики сталкиваются с существенными ограничениями в своей работе. В отличие от коллег, изучающих микромир или макрообъекты в условиях Земли, они не могут проводить эксперименты. Многие из сил, действующих в космосе, проявляют себя лишь на огромном расстоянии или при наличии гигантских по массе и объему объектов. В лаборатории такое взаимодействие не изучишь, поскольку невозможно создать необходимые условия. Общая астрофизика в основном имеет дело с результатами пассивного наблюдения.

В таких условиях трудно себе представить получение данных об объектах. Непосредственного измерения нужных параметров в силу невозможности экспериментов в этом разделе астрономии не существует. В таком случае что изучают астрофизики и на чем основывают свои выводы? Главный источник информации для ученых в подобных условиях — анализ электромагнитных волн, которые излучают небесные тела.

С чего все начиналось

Астрономия — это наука, которая изучает небесные тела с незапамятных времен, однако такой раздел, как астрофизика, был в ней далеко не всегда. Фактически свое становление он начал в 1859 году, когда Г. Кирхгоф и Р. Бунзен по завершении серии экспериментов установили, что любой химический элемент обладает уникальным линейчатым спектром. Это означало, что по спектру небесного тела можно судить о его химическом составе. Так зародился спектральный анализ, а вместе с ним появилась и астрофизика.

Значимость

В 1868 году только что созданный метод сделал возможным обнаружение нового химического элемента - гелия. Его открыли во время наблюдения полного солнечного затмения и изучения хромосферы светила.

Современная астрофизика также во многом базируется на данных Усовершенствованная технология позволяет получать сведения практически обо всех характеристиках небесных тел, а также межзвездного пространства: температуре, составе, поведении атомов, напряжении магнитных полей и так далее.

Невидимое излучение

Существенно расширило возможности астрофизики открытие радиоизлучения. Его регистрация позволила изучать холодный газ, наполняющий межзвездное пространство и испускающий невидимый для глаза свет, а также процессы, протекающие в далеких пульсарах и нейтронных звездах. Огромное значение для всей астрономии имело открытие ставшего подтверждением складывавшейся в это время теории большого взрыва.

Космическая эра подарила астрофизикам новые возможности. Стали доступными ультрафиолетовое, рентгеновское и гамма-излучение, путь к Земле которым преграждает атмосфера. Телескопы, созданные с учетом новых открытий, позволили обнаружить горячий газ в скоплениях галактик, нейтронных звезд, некоторые характеристики черных дыр.

Проблемы астрофизики

Современная наука шагнула далеко вперед по сравнению с тем состоянием, в котором она пребывала в конце 19 века. Сегодня астрофизики пользуются всеми новейшими достижениями в области регистрации электромагнитного излучения и получения на их основе данных об удаленных объектах. Однако нельзя сказать, что этот раздел астрономии абсолютно беспрепятственно движется по пути изучения Вселенной. Условия, складывающиеся в далеком космосе, подчас настолько трудны для регистрации и понимания, что интерпретация полученных данных о тех или иных объектах затруднительна.

В окрестностях черной дыры, недрах нейтронных звезд и их магнитных полях могут проявляться новые физические свойства материи. Невозможность даже приблизительно воспроизвести экстремальные или предельные условия, в которых происходят подобные космические процессы, формирует основные сложности астрофизики.

Модель Вселенной

Одна из важнейших задач современной астрономии — понять, как развивается необъятный космос. На сегодняшний день существует две основные версии: открытая и закрытая Вселенная. Первая подразумевает постоянное и неограниченное расширение. В этой модели расстояние между галактиками только увеличивается, и спустя какое-то время космос станет безжизненной пустыней с редкими островками твердой материи. Другой вариант предполагает, что на смену расширению, которое для большинства является бесспорным фактом, придет фаза сжатия Вселенной. Однозначного ответа на вопрос о том, какая теория верна, пока нет. Более того, появляются открытия, значительно усложняющие понимание будущего Вселенной и вносящие определенный хаос в, казалось бы, стройную картину. К ним относится, например, обнаружение и энергии.

Черные дыры, гамма-всплески

Среди всего того, что изучают астрофизики, есть ряд объектов с особым налетом таинственности. Они также относятся к основным проблемам этого раздела астрономии. В их число входят черные дыры, многие физические процессы в пространстве которых совершенно не изучены, и гамма-всплески. Последние представляют собой выброс огромного количества энергии, импульсы гамма-излучения. Природа их тоже до конца не ясна.

Понимание подобных объектов и явлений может существенно изменить наше представление об устройстве Вселенной и законах космоса. Именно постоянное соприкосновение с тайнами мироздания и делает астрофизику передним краем науки, одновременно высвечивающей ограниченность современных знаний и стимулирующей дальнейшее их развитие. Можно сказать, что этот раздел астрономии стал своеобразным маркером прогресса: каждое открытие знаменует собой победу человеческого разума над еще одной тайной.

Астрофизика - наука, занимающаяся исследованием далеких космических объектов и явлений физическими методами и считающаяся одним из ключевых разделов одновременно и современной астрономии , и современной физики . Астрофизика нацелена на создание физической картины окружающего мира, на изучение происхождения и эволюции, как отдельных классов астрономических объектов, так и Вселенной как единого целого в рамках известных физических законов. Она основана на наблюдениях, из которых важнейшую роль играет анализ излучения космических источников, и, прежде всего, их спектров. Интерпретация результатов наблюдений базируется на знании механизмов излучения электромагнитных волн и их взаимодействия с веществом различной плотности на пути к наблюдателю. Таким образом, предметом астрофизики является строение, физические свойства и химический состав небесных объектов. Астрофизика, в свою очередь, подразделяется на наблюдательную астрофизику , в которой разрабатываются и применяются практические методы и инструментарий астрофизических исследований, а также теоретическую астрофизику , в которой на основе фундаментальных законов физики, строятся теоретические модели, объясняющие наблюдаемые физические явления.

История возникновения

Исторически астрофизика выделилась в самостоятельное научное направление с появлением в конце XIX в. спектрального анализа , который открыл возможность дистанционного исследования химического состава и физического состояния не только лабораторных, но и астрономических источников света. Наблюдения спектров звезд окончательно доказали, что астрономические тела состоят из атомов известных на Земле элементов, подчиняющихся тем же физическим законам. Химическое «единство» природы особенно наглядно было подтверждено открытием гелия - сначала (по спектру) в атмосфере Солнца, а только затем - в некоторых минералах на Земле. Современные методы астрофизических исследований позволяют по спектральным особенностям излучения не только узнать физическое состояние среды, ее температуру и плотность, но и измерить лучевые скорости источников и скорости внутренних движений в них, оценить расстояние до них, выяснить механизм излучения, определить индукцию магнитных полей и многие другие характеристики.

Основы современной астрофизики

Гигантский прогресс астрофизики за более чем столетний период ее существования был связан как с быстрым развитием различных направлений классической, квантовой и релятивистской физики, с одной стороны, так и с созданием крупных телескопов, появлением новых приемников излучения и компьютерных методов обработки наблюдений, - с другой. Очень важный скачок в астрофизических исследованиях произошел с появлением методов активного изучения космических объектов за пределами оптического диапазона спектра, сначала в ближней инфракрасной и радио- областях (конец 30-х годов XX в.), а в более позднее время, уже с помощью космической техники, в далеком инфракрасном, далеком ультрафиолетовом (УФ), рентгеновском и гамма-диапазонах (60-80-е годы XX в.). «Многокрасочность» Вселенной обернулась более глубоким пониманием природы давно известных космических тел, а также открытием новых типов астрономических объектов, неизвестных ранее. Позднее началось развитие и нейтринной астрономии, основанной на регистрации и анализе нейтринного излучения из космоса, хотя до сих пор зарегистрировано нейтринное излучение только от двух космических объектов: от Солнца и от сверхновой звезды, вспыхнувшей в соседней галактике (1987 г.). На очереди стоит астрономия гравитационных волн.

Важной особенностью астрофизики является то, что она исследует процессы, как правило, не воспроизводимые в физических лабораториях. К примеру, термоядерные реакции в плазме, удерживаемой от расширения собственным гравитационным полем, - это не экзотический, а самый распространенный источник энергии наблюдаемых звезд. Только в астрофизике исследуются среды с экстремально низкой плотностью - менее 10 -27 г/см 3 (разреженный межгалактический газ), излучение которых, тем не менее, может приниматься благодаря большим объемам, занимаемым газом. С другой стороны, исследуются экстремально высокие плотности вещества (от нескольких тысяч г/см 3 в звездах из вырожденного газа до 10 14 −10 15 г/см 3 в нейтронных звездах), температуры в миллиарды градусов (внутренние области аккреционных дисков), едва обнаружимые или, наоборот, предельно сильные гравитационные поля, элементарные частицы космического происхождения с ультравысокими энергиями, не достижимыми даже для современных коллайдеров. Изучается даже невидимая «темная» материя, не обнаружимая по излучению электромагнитных волн - используя наблюдения гравитационного воздействию на тела, наблюдаемые непосредственно.

Астрофизика и фундаментальная физическая наука

Все это делает астрофизические исследования неоценимыми для решения фундаментальных физических проблем. Не удивительно, что почти все фундаментальные физические теории - от классической механики и ньютоновской гравитации до теории относительности и физики элементарных частиц - прошли или проходят астрономическую (астрофизическую) проверку.

Очевидно, что астрофизика неотделима от физики, так что четкой границы между ними не существует. Однако астрофизика обладает важной особенностью, заключающейся не столько в специфичном характере космических объектов или в необычных пространственных масштабах явлений, сколько в изучении формирования и эволюции астрономических тел и систем по их наблюдаемому состоянию. По словам крупнейшего отечественного астрофизика И.С. Шкловского, «едва ли не основным результатом многолетних исследований астрономических объектов является утверждение о том, что все они эволюционируют». Основной силой, определяющей характер эволюции и взаимодействия астрономических объектов, является гравитация, которая в физике «земных» явлений, как правило, не имеет решающего значения или воспринимается только как наличие силы тяжести. Поэтому в астрофизике очень большое внимание уделяется изучению гравитационного взаимодействия и самогравитации космических тел.

Таким образом, объяснение природы и наблюдаемых особенностей космических объектов, а также их происхождения и эволюции - это два основных и взаимосвязанных аспекта современной астрофизики.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

АСТРОФИЗИКА

Введение

Цель астрофизики - изучение физической природы и эволюции отдельных космических объектов, включая и всю Вселенную. Таким образом, астрофизика решает наиболее общие задачи астрономии в целом. За последние десятилетия она стала ведущим разделом астрономии. Это не означает, что роль таких «классических» разделов как небесная механика, астрометрия и т.п. - уменьшилась. Наоборот, количество и значимость работ в традиционных областях астрономии в настоящее время также растет, но в астрофизике этот рост проходит быстрее. В целом астрономия развивается гармонически, как единая наука, и направление исследований в различных ее разделах учитывает взаимные их интересы, в том числе и астрофизики. Так, например, развитие космических исследований частично способствовало возникновению нового раздела небесной механики - астродинамики. Построение космических моделей Вселенной предъявляет особые требования к «классическим задачам» астрометрии и т.д

Как известно, за свою многовековую историю астрономия претерпела несколько революций, полностью изменивших ее характер. Одним из результатов этого процесса явилось возникновение и бурное развитие астрофизики. Особенно этому способствовало применение телескопа с начала XVII века, открытие спектрального анализа и изобретение фотографии в XIX веке, возникновение фотоэлектрики, радиоастрономии и внеатмосферных методов исследования в XX веке. Все это необычно расширило возможности наблюдательной или практической астрофизики, и привело к тому, что в середине XX века астрономия стала всеволновой, т.е. получила возможность извлекать информацию из любого диапазона спектра электромагнитных излучения

Параллельно с развитием методов практической астрофизики, благодаря прогрессу в физике и особенно созданию теории излучения и строения атома, развилась теоретическая астрофизика. Ее цель - интерпретация результатов наблюдений, постановка новых задач исследований, а также обоснование методов практической астрофизики

Оба раздела астрофизики в свою очередь подразделяются на более частные. Разделение теоретической астрофизики, как правило, производится по объектам исследований: физика звезд, Солнца, планет, туманностей, космических лучей, космологией и т.д. Разделы практической астрофизики обычно отражают те или иные применяемые методы: астрофотометрия, астроспектрометрия, астрофотография, колориметрия и т.д

Разделы астрофизики, основание на применение принципиально новых методов, составившие эпоху в астрономии, и, как правило, включающие соответствующие разделы теоретической астрофизики получили такие названия, как радиоастрономия, баллонная астрономия, внеатмосферная астрономия (космические исследования), рентгеновская астрономия, гамма-астрономия, нейтринная астрономия

«Я вне себя от изумления, так как уже успел убедится, что Луна представляет собой тело, подобное Земле.»

Галилео Галилей (1610 год)

Оптические телескопы и их использование

История первых оптических наблюдений

Трудно сказать, кто первый изобрел телескоп. Известно, что еще древние употребляли увеличительные стекла. Дошла до нас и легенда о том, что якобы Юлий Цезарь во время набега на Британию с берегов Галлии рассматривал в подзорную трубу туманную британскую землю. Роджер Бекон, один из наиболее замечательных ученных и мыслителей XIII века, он изобрел такую комбинацию линз, с помощью которой отдаленные предметы при рассматривании их кажутся близкими

Так ли это было в действительности - неизвестно. Бесспорно, однако, что в самом начале XVII века в Голландии почти одновременно об изобретении подзорной трубы заявили три оптика - Липперсгей, Мециус и Янсен. Рассказывают, что будто бы дети одного из оптиков, играя с линзами, случайно расположили две из них так, что далекая колокольня вдруг показалась близкой. Как бы там ни было, к конце 1608 года первые подзорные трубы были изготовлены и слухи об этих новых оптических инструментах быстро распространились по Европе

В Падуе в это время уже пользовался широкой известностью Галилео Галилей, профессор местного университета, красноречивый оратор и страстный сторонник учения Коперника. Услышав о новом оптическом инструменте, решил собственноручно построить подзорную трубу. Сам он рассказывает об этом так: «Месяцев десять тому назад стало известно, что некий фламандец построил перспективу, при помощи которой видимые предметы, далеко расположенные от глаз, становятся отчетливо различимы, как будто они находятся вблизи. Это и было причиной, по которой я обратился к изысканию оснований и сре дств дл я изобретения сходного инструмента. Вскоре после этого, опираясь на учение о преломлении, я постиг суть дела и сначала изготовил свинцовую трубу, на концах которой я поместил два оптических стекла, оба плоских с одной стороны, с другой стороны одно стекло выпукло-сферическое, другое вогнутое»

Этот первенец телескопической техники давал увеличение всего в три раза. Позже Галилео удалось построить более совершенный инструмент, увеличивающий в 30 раз. И тогда, как пишет Галилей «оставив дела земные, я обратился к небесам»

7 января 1610 года навсегда останется памятной датой в истории человечества. Вечером этого дня Галилей впервые направил построенный им телескоп на небо. Название «телескоп» было присвоено новому инструменту по решению итальянской Академии наук. Он увидел то, что предвидеть заранее было невозможно. Луна, испещренная горами и долинами, оказалась миром, схожим хотя бы по рельефу с Землей. Планета Юпитер предстала перед глазами изумленного Галилея крошечным диском, вокруг которого обращались четыре необычные звездочки - его спутники. Картина эта в миниатюре напоминала Солнечную систему по представлению Коперника. При наблюдениях в телескоп планета Венера оказалась похожей на маленькую луну. Она меняла свои фазы, что свидетельствовал о о ее обращении вокруг Солнца. На самом Солнце (поместив перед глазами темное стекло) Галилей увидел черные пятна, опровергнув тем самым общепринятое учение Аристотеля о «неприкосновенной чистоте небес». Эти пятна смещались по отношению к краю солнца, из чего Галилей сделал правильный вывод о вращении Солнца вокруг оси

В темные прозрачные ночи в поле зрения галилеевского телескопа было видно множество звезд, недоступных невооруженным глазу. Некоторые туманные пятна на ночном небе оказались скопищами слабо светящихся звезд. Великим собранием скучено расположенных звездочек оказался и Млечный путь - беловатая, слабо светящаяся полоса, опоясывавшая все небо

Несовершенство первого телескопа помешало Галилею рассмотреть кольца Сатурна. Вместо колец он увидел по оде стороны Сатурна два каких-то странных придатка

Открытия Галилея положили начало телескопической астрономии. Но его телескопы, утвердившие окончательно новое коперническое мировоззрение, были очень не совершенны

Уже при жизни Галилея им на смену пришли телескопы несколько иного типа. Изобретателем нового инструмента был уже знакомый нам Иоган Кеплер. В 1611 году в трактате «Диоптрика» Кеплер дал описание телескопа, состоявшего из двух двояковыпуклых линз. Сам Кеплер, будучи типичным астрономом - теоретиком, ограничился лишь описанием схемы нового телескопа, а первым, кто построил такой телескоп и употребил его для астрономических целей, был иезуит Шейкер, оппонент Галилея в их горячих спорах о природе солнечных пятен

Галилей изготовил трубу с увеличением в 30 раз. Эта труба имела длину 1245 мм; объективом у нее была выпуклая линза, диаметром в 53,5 мм; плосковогнутый окуляр имел диаметр в25 мм. Труба с увеличением в 30 раз была лучшей из труб Галилея; она до сих пор сохраняется в музее во Флоренции. При ее помощи Галилей сделал все свои телескопические открытия

Галилей открыл на Луне горы и горные цепи, а также несколько темных пятен, которые назвал морем. При первом же знакомстве с поверхностью Луны Галилео бросилось в глаза сведущее обстоятельство: поверхность Луны казалась похожей на поверхность Земли - на лунной поверхности (как и на земной) оказались и большие горы, и горные цепи, и моря, и долины. Галилей первое время предполагал присутствие на Луне воды (в морях) и атмосферной оболочки

В конце 1609 и в начале 1610 годов Галилей исследовал при помощи телескопа различные небесные объекты, в том числе млечный Путь. Аристотель считал Млечный Путь атмосферным явлением. Но в телескоп Галилей сразу увидел, что сияние Млечного Пути вызывается бесчисленно скученно расположенными звездочками. Таким образом, Млечный путь оказался скоплением звезд, т.е. явлением космическим, а вовсе не атмосферным

Изумительное открытие сделал Галилей, наблюдая в начале января 1610 года планету Юпитер

Сохранился журнал наблюдений Галилея, который он начал регулярно вести с 7 января 1610 года. 7 января он увидел около Юпитера три светлые звездочки; две находились к востоку от Юпитера, а третья - к западу. 8 января он опять направил свою трубу на Юпитер. И что же? Расположение звездочек изменилось. Все три звездочки помещались теперь к западу от планеты и ближе одна к другой, чем в предшествующее наблюдение. «Они, - пишет Галилей в «Звездном вестнике», - по прежнему стояли на одной прямой линии, но уже были разделены собой равными промежутками». 9 января было видно только две, и обе они находились к востоку от Юпитера

13 января Галилей увидал уже четыре звездочки около Юпитера; затем все четыре звездочки он снова наблюдал 15 ,19, 20, 21, 22 и 26 января и окончательно уверился в том, что он сделал совершенно неожиданное открытие: установил существование четырех спутников планеты Юпитер. Этих спутников Галилей решил назвать «светилами Медичи», посвятив свое открытие герцогу Тосканскому Козимо II Медичи

В октябре 1610 года Галилей сделал новое сенсационное открытие: он заметил фазы Венеры. Галилей был уверен, что Венера имеет фазы и нисколько не был удивлен, что их увидел. К концу 1610 года относится еще одно замечательное открытие: Галилей усмотрел на диске Солнца темные пятна. Эти пята приблизительно в тоже время увидели и другие: английский математик Гарриот (1560 - 1621), голландский астроном Иоганн Фабриций (1587 - 1615) и иезуит Христофор Шейнер (1575 - 1650)

Фабриций первый оповестил ученый мир о своем открытии, издав на латинском языке брошюру «Рассказ о пятнах, наблюдениях о Солнце, и кажущемся их перемещении вместе с Солнцем». В этой брошюре автор утверждает, что впервые заметил пятно на диске Солнца 9 марта 1611 года. После нескольких дней наблюдений пятно исчезло на западном краю солнечного диска, а недели через две снова появилось на восточном. Из этих наблюдений Фабриций заключил, что пятно совершает обращение вокруг Солнца. Вскоре, однако, он понял, что перемещение пятна по солнечному диску только кажущееся, и что в действительности само Солнце вращается вокруг оси

Герриот увидел три черных пятна на солнечном диске 1 декабря 1610 года. Наконец, иезуит Христофор Шейнер увидел солнечные пятна в 1611 году, но не торопился с опубликованием своего неожиданного открытия

Открытие Галилея сравнивали с открытием Америки; писали, что текущее столетие будет по праву гордится открытием «новых небес». Имя Галилея прославлялось в многочисленных письмах, в честь него сочинялись оды. Он сделал в короткое время самым знаменитым ученым Европы. Галилей демонстрировал в телескоп небесные объекты многим своим согражданам и случайным посетителям

Замечание Галилея относительно природы Луны и относительно лунных гор и горных цепей и сделанные им измерения высот лунных гор показывают, что он стоял на точке зрения Коперника и Бруно. Из чтения «Звездного вестника» читатели могли вывести только такое заключение, что Галилей, на основании своих телескопических наблюдений, считает Луну сходной по своей природе с Землей

С точки зрения церкви это пахло ересью, так как шло в разрез с освещавшейся церковью идеей Аристотеля о категорическом различие «земного» и « небесного». В свою трубу Галилей не один раз наблюдал «пепельный свет» молодой Луны; он, как за столетие до этого и Леонардо да Винчи, объяснил совершенно правильно явление пепельного света тем, что темная часть поверхности луны в это время освещается светом Солнца, отраженным от земной поверхности. Галилей использовал свое объяснение в чисто коперническом духе в качестве сильного аргумента в пользу того предложения, что и зама Земля, подобно другим планетам, является светилом. Галилей так и пишет: «При помощи доказательств и естественнонаучных выводов мы стократно подтвердили, что Земля движется, как планета, и превосходит Луну блеском своего света». Подобное заключение вело прямо к нарушению основного положения учения Коперника, что Земля - одна из планет, обращающихся вокруг Солнца. Ученые различных лагерей, читавшие «Звездный вестник», хорошо это понимали. Вот почему «Звездный вестник» одними читался с восторгом, другими - с отвращением, как книга еретическая, противная церковной традиции и физике Аристотеля. Говоря о спутниках Юпитера. Галилей также открыто заявляет себя коперниканцем

Против открытий, описанных в «Звездном вестнике», посыпались печатные возражения. Немецкий астролог Мартин Хорки написал брошюру под заглавием: «Очень краткий поход против «Звездного вестника»». Это произведение - стряпня астролога, проникнутого верой в свою «науку» и не желавшего «верить галилеевой трубе», так как «трубы порождают иллюзии». Спутники Юпитера придуманы Галилеем, утверждал Хорки, «для удовлетворения ненасытной его жадности к золоту»

Другой оппонент - итальянец Коломбе - послал Галилею целый трактат, где между прочим возражал против лунных гор и вообще против всякого рода возвышений и углублений на луне. По мнению Коломбе, наблюдавшиеся Галилеем на луне пропасти и впадины заполнены каким-то совершенно прозрачным кристаллическим веществом. Таким образом, Луна все-таки представляет собою точную сферу, как и предполагал «великий учитель Аристотель»

Флорентинец Франческо Сицци тоже выпустил памфлет против «Звездного вестника», где свел споры о новых неожиданных открытиях Галилея к чисто богословским тонкостям. Так, Сицци заявляет, что во второй книге Моисея и в четвертой главе книги пророка Захарии будто бы содержаться указания, что число планет на небе равно семи. Число семь вообще является символом совершенства, например, в голове человека - семь «отверстий» (два уха, два глаза, две ноздри и один рот). Аналогично бог создал семь планет: две «благодетельные» - Юпитер и Венеру, две «вредоносные» - Марс и Сатурн, две являющиеся «светилами» - Солнце и Луну, и одну «безразличную» - Меркурий. Отсюда Сицци делает вывод: никаких новых планет (т.е. спутников Юпитера) не может быть, а Галилей с его трубой грубо ошибся

Таковы были аргументы тогдашних ученых. Однако открытия Галилея скоро были подтверждены. Существование спутников юпитера констатировал Иоган Кеплер. Он описал свои наблюдения в небольшой брошюре на латинском языке: «Рассказ Иоганна Кеплера о его наблюдениях четырех спутников Юпитера, которых флорентийский математик Галилей по праву открытия назвал Медическими светилами». Кеплер наблюдал в довольно посредственную трубу. Несколько раз в начале сентября 1610 года Кеплер ясно видел то двух, то трех спутников Юпитера, но в наблюдении четвертого не был уверен. В ноябре 1610 года Пейреск во Франции тоже регулярно, как и Галилей, стал наблюдать спутников Юпитера, задавшись целью составить таблицы их движения. В наблюдениях ему помогали Готье и Гассенди. Таблиц, однако, им составить не удалось, так как наблюдения их были недостаточно точны

Галилею хотелось подтвердить сделанные им телескопические открытия, отведя нелепые обвинения его в том, что он все это просто придумал. Вскоре ему это удалось. Римская коллегия подтвердила с некоторыми, очень незначительными оговорками действительность телескопических открытий Галилея. Отцы-иезуиты римской коллегии сами наблюдали весьма тщательно и усердно, записи и чертежи их наблюдений юпитеровых спутников сохранились и были опубликованы в миланском издании сочинений Галилея. Таким образом, в ожесточенной борьбе между учеными-новаторами и учеными-схоластиками, занимавшим положение Аристотеля, победил Галилей. Но его победа над упрямыми противниками создала ему множество врагов среди ученых схоластического лагеря. Католическая церковь всячески поддерживала учение Аристотеля, так что печатные выступления Галилея против последнего расценивалось его противниками как выпад против церкви и общепринятого тогда церковного миро представления. Борьба Галилея за новую науку, за новое коперническое мировоззрение началась. В последующие годы эта борьба еще более развернулась и обострилась

Рассмотрим оптические схемы и принцип действия галилеевского и кеплеровского телескопов. Линза А, обращенная к объективу наблюдения, называется объективом, а та линза В , к которой прикладывает свой глаз наблюдатель - окуляром. Если линза толще посередине, чем на краях, она называется собирательной или положительной, в противном случае - рассеивающей или отрицательной. В телескопе самого Галилея объективом служила плосковыпуклая линза, а окуляром - плосковогнутая. По существу, галилеевский телескоп был прообразом современного театрального бинокля, в котором используются двояковыпуклые и двояковогнутые линзы в телескопе Кеплера и объектив и окуляр были положительными двояковыпуклыми линзами

Представим себе простейшую двояковыпуклую линзу, сферические поверхности которой имеют одинаковую кривизну. Прямые, соединяющие центры этих поверхностей, называются оптической осью линзы. Если на такую линзу падают лучи, идущие параллельно оптической оси, они, преломляются в линзе, собираются в точке оптической оси, называемом фокусом линзы. Расстояние от центра линзы до ее фокуса называют фокусным расстоянием

Чем больше фокусное кривизна поверхностей собирательной линзы, тем меньше ее фокусное расстояние. В фокусе такой линзы всегда получается действительное изображение предмета

Иначе ведут себя рассеивающие, отрицательные линзы. Падающий на них параллельно оптической оси пучок они рассеивают и в фокусе такой линзы сходятся не сами лучи, а их продолжение. Поэтому рассеивающие линзы имеют, как говорят, мнимый фокус и дают мнимое изображение

Небесные светила, практически говоря, находятся «в бесконечности», то изображение их получаются в фокальной плоскости, то есть в плоскости, проходящей через фокус F и перпендикулярной к оптической оси. Между фокусом и объективом Галилей поместил рассеивающую линзу, которая давала мнимое, прямое увеличение изображение MN

Главным недостатком галилеевского телескопа было очень малое поле зрения - так называют угловой поперечник кружка неба, видимого в телескоп. Из-за этого наводить телескоп на небесное светило и наблюдать его Галилею было очень трудно. По этой же причине галилеевские телескопы после смерти их изобретателя в астрономии не употреблялись и их реликтом можно считать современные театральные бинокли

В кеплеровском телескопе изображение получается действительное, увеличенное и перевернутое. Последнее обстоятельство, неудобное при наблюдениях земных предметов в астрономии несущественно - ведь в космосе нет какого-то абсолютного верха или низа, а потому небесные тела не могут быть повернуты телескопом «вверх ногами»

Первое из двух главных преимуществ телескопа - это увеличение угла зрения, под которым видим небесные объекты. Человеческий глаз способен в отдельности различать две части предмета, если угловое расстояние между ними не меньше одной минуты дуги. Поэтому, например, на Луне невооруженный глаз различает только крупные детали, поперечник которых превышает 100 км. В благоприятных условиях, когда Солнце затянуто облачной дымкой, на его поверхности удается рассмотреть самые крупные из солнечных пятен. Никаких других подробностей невооруженным глазом на небесных телах не видно. Телескоп же увеличивает угол зрения в десятки и сотни раз

Второе преимущество телескопа по сравнению с глазом заключается в том, что телескоп собирает гораздо больше света, чем зрачок человеческого глаза, имеющий даже в полной темноте диаметр не больше 8 мм. Очевидно, что количество света, собираемого телескопом, во столько раз больше того количества, которое собирает глаз, во сколько площадь объектива больше площади зрачка. Иначе говоря, это отношение равно отношению квадратов диаметров объектива и зрачка

Собранный телескопом свет выходит из его окуляра концентрированным световым пучком. Наименьшее его сечение называется выходным зрачком. У галилеевской трубы выходного зрачка нет. В сущности, выходной зрачок - это изображение объектива, создаваемое окуляром. Можно доказать, что увеличение телескопа (то есть увеличение угла зрения по сравнению с невооруженным глазом) равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра. Казалось бы, можно достичь любых увеличений. Теоретически это так, но практически все выглядит иначе. Во-первых, чем больше употребляемое в телескопе увеличение, тем меньше его поле зренья. Во-вторых, с ростом увеличения становятся все заметней движения воздуха. Неоднородные воздушные струи размазывают, портят изображение и иногда то, что видно при малых увеличениях, пропадает для больших. Наконец, чем больше увеличение, тем бледнее, тусклее изображение небесного светила (например, Луны). Иначе говоря, с ростом увеличения хотя и видно больше подробностей на Луне, солнце и планетах, но зато уменьшается поверхностная яркость их изображений. Есть и другие препятствия, мешающие применять очень большие увеличения (например, в тысячи и десятки тысяч раз). Приходится искать некоторый оптимум и поэтому даже в современных телескопах, как правило, наибольшие увеличения не превосходят нескольких сотен раз

При создании телескопов со времен Галилея придерживаются следующего правила: выходной зрачок телескопа не должен быть больше зрачка наблюдателя. Легко сообразить, что в противном случае часть света, собранного объективом, будет напрасно потеряна. Очень важной величиной, характеризующей объектив телескопа, является его относительное отверстие, то есть отношение диаметра объектива телескопа к его фокусному расстоянию. Светосилой объектива называется квадрат относительного отверстия телескопа. Чем « светосильнее » телескоп, т.е. чем больше светосила его объектива, тем более яркие изображения объектов он дает. Количество же света, собираемого телескопом, зависит лишь от диаметра его объектива (но не от светосилы). Из-за явления, именуемого в оптике дифракцией, при наблюдениях в телескопы яркие звезды кажутся небольшими дисками, окруженными несколькими концентрическими радужными кольцами. Разумеется, к настоящим дискам звезд дифракционные диски никакого отношения не имеют

Таково было скромное начало развернувшегося позже «Чемпионата» телескопов - длительной борьбы за усовершенствование этих главных астрономических инструментов

Схема и устройство оптических телескопов

После того как в 1609 году Галилей впервые направил на небо телескоп, возможности астрономических наблюдений возросли в очень сильной степени. Этот год явился началом новой эры в науке - эры телескопической астрономии. Телескоп Галилея по нынешним понятиям был несовершенным, однако современникам казалось чудом из чудес. Каждый, заглянув в него, мог убедится, что Луна - это сложный мир, во многом подобный Земле, что вокруг Юпитера обращается четыре маленьких спутника, так же как Луна вокруг Земли. Все это будило мысль, заставляло задумываться о сложности Вселенной, ее материальности, о множестве обитаемых миров. Изобретение телескопа вместе с системой Коперника сыграло немалую роль в ниспровержении религиозной идеологии средневековья

Изобретение телескопа, как и большинство великих открытий, не было случайным, оно было подготовлено всем предыдущим ходом развития науки и техники. В XVI веке мастера-ремесленники хорошо научились делать очковые линзы, а отсюда был один шаг до телескопа и микроскопа

Телескоп имеет три основных назначения:

Собирать излучения от небесных светил на приемное устройство (глаз, фотографическую пластинку, спектрограф и др.);

Строить в своей фокальной плоскости изображение объекта или определенного участка неба;

Помочь различать объекты, расположение на близком угловом расстоянии друг от друга и поэтому неразличимые невооруженным глазом

Основной оптической частью телескопа является объектив, который собирает свет и строит изображение объекта или участка неба. Объектив соединяется с приемным устройством- трубой (тубусом). Механическая конструкция, несущая трубу и обеспечивающая ее наведение на небо, называется монтировкой. Если приемником света является глаз (при визуальных наблюдениях), то обязательно необходим окуляр, в который рассматривается изображение, построенное объективом. При фотографических, фотоэлектрических, спектральных наблюдениях окуляр не нужен. Фотографическая пластинка, входная диафрагма электрофотометр, щель спектрографа и т.д. устанавливаются непосредственное в фокальной плоскости телескопа

Телескоп с линзовым объективом называется рефрактором, т.е. преломляющим телескопом. Так как световые лучи различных длин волн преломляются по-разному, то одиночная линза дает окрашенное изображение. Это явление называется хроматической аберрацией. Хроматическая аберрация в значительной мере устранена в объективах, составленных из двух линз, изготовленных из стекол с разным коэффициентом преломления (ахроматический объектив или ахромат)

Законы отражения не зависит от длины волны, и естественно возникла мысль заменить линзовый объектив вогнутым сферическим зеркалом. Такой телескоп называется рефлектором, т.е. отражательным телескопом. Первый рефлектор (диаметром всего лишь в 3 см и длиной в 15 см) был построен ньютоном в 1671 году

Сферическое зеркало не собирает параллельного пучка лучей в точку; оно дает в фокусе несколько разлитое пятнышко. Это искажение называется сферической аберрацией. Если зеркалу придать форму параболоида вращения, то сферическая аберрация исчезает. Параллельный пучок, направленный на такой параболоид вдоль его оси, собирается в фокусе практически без искажений, если не считать неизбежного размытия из-за дифракции. Поэтому современные рефлекторы имеют зеркала параболоидальной или, как чаще говорят, параболической формы

До конца XIX века основной целью телескопических наблюдений было изучение видимых положений небесных светил. Важную роль играли наблюдения комет и деталей на планетных дисках. Все эти наблюдения производились визуально, и рефракторы с двулинзовым объективом полностью удовлетворял потребности астрономов

В конце XIX и особенно в XX веке характер астрономической науки претерпел органические изменения. Центр тяжести исследований переместился в область астрофизики и звездной астрономии. Основным предметом исследования стали физические характеристики Солнца, планет, звезд, звездных систем. Появились новые приемники излучения - фотографическая пластинка и фотоэлемент. Стала широко применяться спектроскопия. В результате изменились и требования к телескопам

Для астрофизических исследований желательно, чтобы оптика телескопа не накладывала никаких ограничений на доступный диапазон длин волн: земная атмосфера и так ограничивает его слишком сильно. Между тем стекло, из которого делаются линзы, поглощает ультрафиолетовое и инфракрасное излучение. Фотографические иммульсии и фотоэлементы чувствительны в более широкой области спектра, чем глаз, и потому хроматическая аберрация при работе с этими приемниками сказывается сильнее

Таким образом, для астрофизических исследований нужен рефлектор. К тому же большое зеркало рефлектора изготовить значительно легче, чем двухлинзовый ахромат: надо обработать с оптической точностью (до 1/8 длины световой волны или 0,07 микрона для визуальных лучей) одну поверхность вместо четырех, и при этом не предъявляется особых требований к однородности стекла. Все это привело к тому, что рефлектор стал основным инструментом астрофизики. В астрометрических работах по-прежнему применяются рефракторы. Причина этого состоит в том, что рефлекторы очень чувствительны к малым случайным поворотам зеркала: так как угол падения равен углу отражения, то поворот зеркала на некоторый угол b смещает изображение на угол 2 b . Аналогичный поворот объектива в рефракторе дает гораздо меньшее смещение. А так как в астрометрии надо измерять положение светил с максимальной точностью, то выбор был сделан в пользу рефракторов

Как уже сказано, рефлектор с параболическим зеркалом строит изображение очень четко, однако тут необходимо сделать одну оговорку. Изображение можно считать идеальным, пока оно остается вблизи оптической оси. При удалении от оси появляются искажения. Поэтому рефлектор с одним толь параболическим зеркалом не позволяет фотографировать больших участков неба размером, скажем, 5 0 x 5 0 , а это необходимо для исследования звездных скоплений, галактик и галактических туманностей. Поэтому, для наблюдений, требующих большого поля зрения, стали строить комбинированные зеркально-линзовые телескопы, в которых аберрация зеркала исправляется тонкой линзой, часто увиолевой (сорт стекла, пропускающего ультрафиолетовые лучи)

Зеркала рефлекторов в прошлом (XVIII - XIX веках) делали металлическими из специального сплава, однако впоследствии по технологическим причинам оптики перешли на стеклянные зеркала, которые после оптической обработки покрывают тонкой пленкой металла, имеющего большой коэффициент отражения (чаще всего алюминий)

Телескоп-рефлектор, приспособленный для наблюдений непосредственно в фокусе параболического зеркала, называется рефлектором с прямым фокусом. Часто используются более сложные системы рефлекторов; например, с помощью дополнительного плоского зеркала, установленного перед фокусом, можно вывести фокус в бок за пределы трубы (ньютоновский фокус). Дополнительным выпуклым пред фокальным зеркалом можно удлинить фокусное расстояние и вывести фокус в отверстие просверленное в центре главного зеркала (кассегреновский фокус), и т.д. некоторые из таких более сложных систем рефлекторов показаны на рисунке. они удобнее для присоединения приемных устройств к телескопу, но из-за дополнительных отражений дают большие потери света

Сложной технической задачей является наведение телескопа на объект и смещение за ним. Современные обсерватории оснащены телескопами диаметром от нескольких десятков сантиметров до нескольких метров. Самый большой в мире рефлектор действовал в советском Союзе. Он имел диаметр 6 м и установлен на высоте 2070 м (гора Пастухова, вблизи станицы Зеленчукской на Северном Кавказе). Следующий по размерам рефлектор имеет диаметр 5 м и находится в США (обсерватория Маунт Паломар)

Монтировка телескопа всегда имеет две взаимно перпендикулярные оси, поворот вокруг которых позволяет навести его в любую область неба. В монтировке, называемой вертикально-азимутальной, одна из осей направлена в зенит, другая лежит в горизонтальной плоскости. На ней монтируются небольшие переносные телескопы. Крупные телескопы, как правило, устанавливаются на экваториальной монтировке, одна из осей которой направлена в полюс мира (полярная ось), а другая лежит в плоскости небесного экватора (ось склонения). Телескоп на экваториальной монтировке называется экваториалом

Чтобы следить за небесным светилом в экваториал, достаточно поворачивать его только вокруг полярной оси в направлении роста часового угла, так как склонение светила остается неизменным. Этот поворот осуществляется автоматически часовым механизмом. Известно несколько типов экваториальной монтировки. Телескопы умеренного диаметра (до 50- 100 см) часто устанавливаются на «немецкой» монтировке, в которой полярная ось и ось склонения образуют параллактическую головку, опирающуюся на колонну. На оси склонения, по одну сторону от колонны, располагается труба, а по другую - уравновешивающий ее груз, противовес. «Английская» монтировка отличается от немецкой тем, что полярная ось опирается концами на две колонны, северную и южную, что придает ей дополнительную устойчивость. Иногда в английской монтировке полярную ось заменяет четырехугольной рамой, так что труба оказывается внутри рамы. Подобная конструкция не позволяет направить инструмент на полярную неба. Если северный (верхний) подшипник полярной оси сделать в форме подковы, то такого ограничения не будет. Наконец, можно вообще убрать северную колонну и подшипник. Тогда получиться «американская» монтировка или «вилка»

Часовой механизм не всегда действует только, и при получении фотографий с длительными экспозициями, достигающими иногда многих часов, приходится следить за правильностью наведения телескопа и время от времени его подправлять. Этот процесс называется гидированием. Гидирование осуществляется с помощью гида - небольшого вспомогательного телескопа, установленного на общей монтировке с главным телескопом

Использование фотографических методов

С середины прошлого века в астрономии стал применяться фотографический метод регистрации излучения. В настоящее время он занимает ведущее место в оптических методах астрономии

Длительные экспозиции на высокочувствительных пластинках позволяют получать фотографии очень слабых объектов, в том числе таких, которые практически недоступны для визуального наблюдения. В отличие от глаза, фотографическая эмульсия способна к длительному накоплению светового эффекта. Очень важным свойством фотографии является панорамность: одновременно регистрируется сложное изображение, которое может состоять из очень большого числа элементов. Существенно, наконец, что информация, которая получается фотографическим методом, не зависит от свой ств гл аза наблюдателя, как это имеет место при визуальных наблюдениях. Фотографическое изображение, полученное однажды, сохраняется как угодно долго, и его можно изучать в лабораторных условиях

Фотографическая эмульсия состоит из зерен галоидного серебра (AgBr , AgCl и др.; в различных сортах эмульсии применяются разные соли), взвешенных в желатине. Под действием света в зернах эмульсии протекают сложные фотохимические процессы, в результате которых выделяется металлическое серебро. Чем больше света поглотилось данным участком эмульсии, тем больше выделяется серебра

Галоидное серебро поглощает свет в области l < 5 0 0 0 Е. Область спектра 3000-5000Е называют иногда фотографической (аналогично визуальной, 3900-7600Е). Чтобы сделать эмульсию чувствительной к желтым и красным лучам, в ней вводят органические красители - сенсибилизаторы, расширяющие область спектральной чувствительности. Панхроматические эмульсии - это сенсибилизированные эмульсии, чувствительные до 6500-7000Е (в зависимости от сорта). Кривые спектральной чувствительности различных эмульсий показаны на рисунке. они широко применяются в астрономической и обычной фотографии. Значительно реже встречаются инфрахроматические эмульсии, чувствительные к инфракрасным лучам до 9000Е, иногда и до 13000Е

Звезды на фотографиях выходят в виде кружков. Чем ярче звезда, тем большего диаметра получается кружочек при данной экспозиции. Различие в диаметрах фотографических изображений звезд является чисто фотографическим эффектом и никак не связан с их истинными угловыми диаметрами. Научной обработке подвергаются, как правило, только сами негативы, так как при перепечатке искажается заключенная в них информация. В астрономии используются как стеклянные пластинки, так и пленки. Пластинки предпочтительнее в тех случаях, когда по негативам изучается относительное положение объектов. Сравнивая между собой фотографии одной и той же части неба, полученные в разные дни, месяцы и годы, можно судить об изменениях, которые в этой области произошли. Так, смещение малых планет и комет (когда они находятся далеко от Солнца и хвост еще не заметен) среди звезд легко обнаруживается при сравнении негативов, полученных с интервалом в несколько суток. Собственные движения звезд, а также отдельны сгустков межзвездного вещества в газовых туманностях изучаются по фотографиям, полученным через большие интервалы времени, иногда достигающие многие десятилетия. Изменение блеска переменных звезд, вспышки новых или сверхновых звезд тоже легко обнаруживается при сравнении негативов, полученных в разные моменты времени

Для исследования подобных изменений используются специальные приборы - стереокомпаратор и блинк-микроскоп. Стереокомпаратор служит для обнаружения перемещений. Он представляет собой своего рода стереоскоп. Обе пластинки, снятые в разное время, располагаются так, что исследователь видит их изображения совмещенными. Если какая-либо звезда заметно сместилась, она «выскочит» из картинной плоскости. Блинк-микроскоп отличаются от стереокомпаратора тем, что специальной заслонкой можно закрывать либо одно, либо другое изображение. Если эту заслонку быстро колебать, то можно сравнивать не только положения, но и величины изображений звезд на обеих пластинках. Изменение положения или изменение звездной величины при этом легко обнаруживаются. Точные измерения положения звезд не пластинках производятся на координатных измерительных приборах

Почернение негатива приблизительно определяется произведением освещенности E на продолжительность экспозиции t . Этот закон называется законом взаимозаместимости. Он выполняется более или менее хорошо лишь в ограниченном интервале освещенности. Для каждого сорта эмульсии, при которых он наиболее эффективен. В частности, очень чувствительные кино- и фотопленки, предназначенные для коротких экспозиций, не пригодны для длительных, применяемые в астрономии

Фотография позволяет проводить фотометрические исследования астрономических объектов, т.е. определять количество их яркость и звездную величину. Для этого необходимо знать зависимость почернения негатива от освещенности - провести калибровку негатива. Чтобы измерить степень почернения, надо пропустить сквозь негатив световой пучок, интенсивность которого регистрируется. Можно выделить три участка или области характеристической кривой: область недодержек, где крутизна кривой уменьшается с уменьшением Et , область нормальной экспозиции, где крутизна максимальная и зависимость почти линейная, и область передержек, где крутизна уменьшается с увеличением Et . При правильно выбранной экспозиции почернение должно соответствовать линейному участку. Чтобы построить характеристическую кривую, на эмульсию впечатывается изображение нескольких (обычно порядка 10) площадок, освещенность которых находится в известном отношении. Эта операция называется калибровкой негатива

Зная характеристическую кривую, можно сравнивать освещенности, соответствующие различным точкам негатива, и в случае протяженных объектов, таких как туманности или планеты, построить их щофоты. Этого достаточно для относительной фотометрии (т.е. измерения отношения яркости и блеска). Для абсолютной фотометрии (т.е. измерение абсолютных значений яркости и блеска) необходимо провести, кроме калибровки, еще и стандартизацию. Для стандартизации надо впечатать на эмульсию изображение площадки с известной яркостью (для протяженных источников) или иметь на негативе звезды с известными звездными величинами. При относительной фотометрии точечных объектов калибровка делается обычно по звездам с известным блеском

Для измерения почернения негатива применяются фотоэлектрические микрофотометры. В этих приборах интенсивность светового пучка, прошедшего сквозь негатив, измеряется фотоэлементом

Главный недостаток фотографической пластинки приемника излучения - это нелинейная зависимость почернения от освещенности. Кроме того, почернение зависит от условий обработки. В результате точность фотометрических измерений, производимых фотографическим методом, обычно не превышает 5-7 %

Спектральные наземные исследования

Рассмотрим основные типы спектральных приборов, применяемых в астрономии. Впервые спектры звезд и планет начал наблюдать в прошлом веке итальянский астроном Секки. После его работ спектральным анализом занялись многие астрономы. Вначале использовались визуальный спектроскоп, потом спектры стали фотографировать, а сейчас применяются также и фотоэлектрическая запись спектра. Спектральные приборы с фотографической регистрацией спектра обычно называют спектрографами, а с фотоэлектрической - спектрометрами

На рисунке дана оптическая схема призменного спектрографа. Перед призмой находятся щель и объектив, которые образуют коллиматор. Коллиматор посылает на призму параллельный пучок лучей. Коэффициент преломления материала призмы зависит от длины волны. Поэтому после призмы параллельные пучки, соответствующие различным длинам волн, расходятся под различными углами, и второй объектив (камера) дает в фокальной плоскости спектр, который фотографируется. Если в фокальной плоскости камеры поставить вторую щель, то спектрограф превратиться в монохроматор. Перемещая вторую щель по спектру или поворачивая призму, можно выделять отдельные более или менее узкие участки спектра. Если теперь за выходной щелью монохроматора поместить фотоэлектрический приемник, то получится спектрометр

В настоящее время наряду с призменными спектрографами и спектрометрами широко применяются и дифракционные. В этих приборах вместо призмы диспергирующим (т.е. разлагающим на спектр) элементом является дифракционная решетка. Наиболее часто используется отражательные решетки

Отражательная решетка представляет собой алюминированое зеркало, на котором нанесены параллельные штрихи. Расстояние между штрихами и их глубина сравнимы с длинной волны. Например, дифракционные решетки, работающие в видимой области спектра, часто делаются с расстоянием между штрихами 1,66 мк (600 штрихов на 1 мм). Штрихи должны быть прямыми и параллельными друг другу по всей поверхности решетки, и расстояние между ними должно сохраняться постоянным с очень высокой точностью. Изготовление дифракционных решеток, поэтому является наиболее трудным из оптических производств

Получая спектр с помощью призмы, мы пользуемся явлением преломления света на границе двух сред. Действий дифракционной решетки основано на явлении другого типа - дифракция и интерференция света. Заметим, что она дает, в отличи и от призмы, не один, а несколько спектров. Это приводит к определенным потерям света по сравнению с призмой. В результате применения дифракционных решеток в астрономии долгое время ограничивалось исследованиями Солнца. Указанный недостаток был устранен американским оптиком Вудом. Он предложил придавать штрихам решетки определенный профиль, такой, что большая часть энергии концентрируется в одном спектре, в то время как остальные оказываются сильно ослабленными. Такие решетки называются направленными или эшелеттами

Особенности оптической схемы и конструкции астрономических спектральных приборов сильно зависит от конкретного характера задач, для которых они предназначены. Спектрографы, построенные для получения звездных спектров (звездные спектрографы), заметно отличаются от небулярных, с которыми исследуются спектры туманностей. Солнечные спектрографы тоже имеют свои особенности. Реальная разрешающая сила астрономических приборов зависит от свойств объекта. Если объект слабый, т.е. от него приходит слишком мало света, то его спектр нельзя исследовать очень детально, так как с увеличением разрешающей силы количество энергии, приходящей на каждый разрешаемый элемент спектра, уменьшается. Поэтому самую высокую разрешающую силу имеют, естественно, солнечные спектральные приборы. У больших солнечных спектрографов она достигает 10 6 . линейная дисперсия этих приборов достигает 10 мм/Е (0,1 Е/мм)

При исследовании наиболее слабых объектов приходится ограничиваться разрешающей силой порядка 100 или даже 10 и дисперсиями ~1000 Е/мм. Например, спектры слабых звезд получаются с помощью объективной призмы, которая является простейшим астрономическим спектральным прибором. Объективная призма ставиться прямо перед объективом телескопа, и в результате изображение звезд растягиваются в спектр. Камерой служит сам телескоп, а коллиматор не нужен, поскольку свет от звезды приходит в виде параллельного пучка. Такая конструкция делает минимальными потери света из-за поглощения в приборе. На рисунке приведена фотография звездного поля, полученная с объективной призмой

Грубое представление о спектральном составе излучения можно получить с помощью светофильтров. В фотографической и визуальной областях спектра часто применяют светофильтры из окрашенного стекла. На рисунке приведены кривые, показывающие зависимость пропускания от длины волны для некоторых светофильтров, комбинируя которые с тем или иным приемником, можно выделить участки не уже нескольких сотен ангстрем. В светофильтрах из окрашенного стекла используется зависимость поглощения (абсорбции) света от длины волны. Светофильтры этого типа называются абсорбционными. Известны светофильтры, в которых выделение узкого участка спектра основано на интерференции света. Они называются интерференционными и могут быть сделаны довольно узкополосными, позволяющими выделять участки спектра шириной в несколько десятков ангстрем. Еще более узкие участки спектра (шириной около 1 ангстрема) позволяют выделять интерференционнополяризационные светофильтры

С помощью узкополосных светофильтров можно получить изображение объекта в каком-либо интересном участке спектра, например, сфотографировать солнечную хромосферу в лучах H a (красная линия в бальмеровской серии спектра водорода), солнечную корону в зеленой и красной линиях, газовые туманности в эмиссионных линиях

Для солнечных исследований разработаны приборы, которые позволяют получить монохроматические изображения в любой длине волны. Это - спектрогелиограф и спектрогелиоскоп. Спектрогелиограф представляет собой монохроматор, за выходной щелью которого находится фотографическая кассета. Кассета движется с постоянной скоростью в направлении, перпендикулярном выходной щели, и с такой же скоростью в плоскости выходной щели перемещается изображение Солнца. Легко понять, что в этом случае на фотографической пластинке получиться изображение Солнца в заданной длине волны, называемое спектрограммой. В спектрогелиоскопе, перед выходной щелью и после выходной щели устанавливаются вращающиеся призмы с квадратным сечением. В результате вращения первой призмы некоторый участок солнечного изображения периодически перемещается в плоскости входной щели. Вращение обеих призм согласованно, и если оно происходит достаточно быстро, то, наблюдая в зрительную трубу вторую щель, мы видим монохроматическое изображение Солнца

Достижения современной оптической астрономии

Использование ПЗУ-матриц ЭВМ

Развитие физики твердого тела и достижения в области твердотельной технологии обеспечили возможность промышленного изготовления стабильных фотоприемников, пригодных для эксплуатации в инфракрасной бортовой оптико-электронной аппаратуре. Успехи в этих областях знаний позволили создать в последние годы линейки и матрицы приемников с высокой плотностью чувствительных элементов

Для формирования выходного сигнала аппаратуры необходимо поочередно измерить электрические сигналы, поступающие с каждого элемента линейки. Можно сказать, должно быть обеспечено последовательное подключение электрических проводников от отдельных элементов к общему выходу

Путем такого «опроса» чувствительных площадок, расположенных в ряд, вырабатывается электрический сигнал, соответствующий одной строке изображения. Процесс переключения электрических цепей чувствительных элементов в аппаратуре осуществляется специальным электронным переключателем последовательного действия. В итоге линейка приемников обеспечивает строчное сканированное изображение электронным, а не механическим способом

В новейших, наиболее перспективных образцах инфракрасной аппаратуры все чаще используются твердотельные схемы, обеспечивающие прием и обработку сигнала с линейки или матрицы в одном устройстве. Первых два коротких сообщения группы американских исследователей об этой новой идее в области физики твердого тела и об ее экспериментальной проверке появились в 1970 году. Приборы с зарядовой связью - так был назван этот класс устройств - привлекали к себе чрезвычайный интерес и за прошедшие после их изобретения годы нашли самое широкое применение в устройствах формирования изображений в вычислительной технике, в устройствах отображения информации

С точки зрения физики приборы с зарядовой связью интересны тем, что электрический сигнал в них представлен не током или напряжением, а электрическим зарядом. Прибор с зарядовой связью представляет собой линейку электродов на изолирующей основе, нанесенной на поверхность тонкой пластины полупроводника. Обычно под металлическими под металлическими электродами расположен изолирующий слой окисла SiO 2 , а в качестве полупроводникового материала используется Si . В результате образуется как бы сэндвич: металл - окисел - полупроводник

В приборах с зарядовой связью появляется возможность, подавая напряжение на металлические электроды, воздействовать через изолятор на положение энергетического уровня, сдвигая его вниз от горизонтальной линии в местах расположения электродов. В итоге на границе раздела Si - SiO 2 энергетическая диаграмма будет представлять собой не ровную, а холмистую поверхность, на которой впадины будут расположены под теми электродами, к которым приложено напряжение

Для наглядности впадины этого рельефа на энергетической диаграмме представляют в виде ямы с плоским дном и вертикальными стенками. Чем выше напряжение на электроде, тем глубже яма под данным электродом в месте его расположения. Когда фотон попадает на чувствительный к излучению Si и создает электронно-дырочную пару, то электрон стекает в ближайшую потенциальную яму. При дальнейшем облучении образца электроны будут накапливаться и сохраняться в соответствующих потенциальных ямах

Для совокупности электронов, захваченных потенциальной ямой, физики также придумали образное название, ставшее общепризнанным, - «зарядовый пакет». Такие зарядовые пакеты в соответствии с изложенным механизмом будут возникать на поверхности полупроводника

Использование спутниковых систем Земли для определения расстояния до звезд

Определение расстояний до тел солнечной системы основано на измерении их горизонтальных параллаксов. Параллаксы, определенные по параллактическому смещению светила, называются тригонометрическими

Подобные документы

    Цель астрофизики – изучение физической природы и эволюции отдельных космических объектов. Оптические телескопы и их использование. История первых наблюдений. Схема и устройство телескопов. Спектральные наземные исследования. Современная астрономия.

    реферат , добавлен 01.07.2008

    Особенности проведения наблюдений и исследования избранных космических объектов в фотометрической системе Джонсона. Определение фотометрических величин оптических источников в условиях городской засветки. Алгоритм выявления таксонометрического класса.

    дипломная работа , добавлен 16.02.2016

    Эволюция Земли в тесном взаимодействии с Солнцем и Луной. Роль и значение луны для жизни на планете Земля. Спектральный анализ как один из основных методов современной астрофизики. Методы поиска различных форм жизни с помощью космических аппаратов.

    презентация , добавлен 08.07.2014

    Астрономия - наиболее древняя среди естественных наук, история ее развития. Изучение видимых движений Солнца и Луны в Древнем Китае за 2 тысячи лет до н.э. Система мира Птолемея. Возникновение науки астрофизики. Современные достижения астрономии.

    презентация , добавлен 05.11.2013

    Классификация спутников Земли, виды космических кораблей и станций. Порядок вычисления круговой орбитальной скорости. Особенности движения спутников вблизи Земли. Характеристика электромагнитных волн. Принципы работы аппаратуры оптических спутников.

    презентация , добавлен 02.10.2013

    Формирование галактик. Неустойчивость, сжатие. Наблюдая эволюцию галактик. Типы галактик. Перерождение галактик. Наша Галактика - это еще не вся Вселенная. Физика и логика эфирной Вселенной. Проблемы современной астрофизики.

    курсовая работа , добавлен 24.10.2002

    Расстояние до квазаров. Красное смещение. Скорость удаления. Возраст квазаров. Необычайная светимость. Источник энергии. Переменность и размер. Инфракрасное и рентгеновское излучение квазаров. Кратные квазары. Радиоструктура квазаров.

    реферат , добавлен 13.04.2003

    Фундаментальные проблемы в астрофизике: космология, ядра галактик, поиск внеземных цивилизаций. Граничные условия, необходимые для существования жизни. Следы жизни на планетах, естественных спутниках планет, астероидах и кометах солнечной системы.

    реферат , добавлен 03.07.2010

    Современное развитие техники наблюдений. Совершенствование спектральной аппаратуры. Снимок чёрной дыры в рентгеновских лучах. Использование специальных фильтров для исследования Солнца. Разработка теории эволюции звёзд на основе ядерных процессов.

    презентация , добавлен 09.02.2014

    Требования к структуре малых космических объектов. Основные элементы корпуса спутника, имеющие соединение с телом ракеты-носителя. Структурно-параметрический синтез универсальной платформы, ее расчет на прочность. Выбор оптимальной формы корпуса аппарата.