Как находить процент от числа. Как найти процент от суммы

Предположим что x - это просто действительное число. Записывают это так: x∈ℝ - читается x принадлежит множеству действительных чисел. Всему множеству, элемент 0 тоже туда входит. И никакого подвоха с элементами x тут нет: бесконечность не является частью множества, которому принадлежит x, при этом x не является первообразной.

Предложу ещё один вариант решения, пока не упомянутый здесь:

Для начала введем некоторое определение:
Группой является множество элементов произвольной природы с введённой между ними (единственной!) операцией (обозначаемой в данном случае +), обладающей следующими свойствами:
(Обозначим нашу группу буквой G)
1) Замкнутость: ∀x,y ∈ G ⇒ x+y ∈ G. Читается так: для любых двух элементов x и y из группы G следует что их сумма так же является элементом группы G

2) Ассоциативность: ∀x,y,z ∈ G ⇒ (x+y)+z = x+(y+z). Читается так: для любых трёх элементов x,y,z принадлежащих группе G следует что можно сперва применить групповую операцию к элементам x и y, и в результате получить некоторый элемент (x+y) ∈ G, а затем применить групповую операцию к элементам (x+y) и z. Полученный в результате элемент должен быть равен элементу, который был получен в результате применения операции сперва к y и z, а затем к x и (y+z). То есть говоря проще перестановка скобок не меняет результата: (x+y)+z = x+(y+z)
3) ∀x ∈ G ⇒ ∃e ∈ G: x + e = e+ x = x. Читается так: В группе должен быть элемент e (называемый единицей группы), такой, что если применить групповую операцию e + x, а затем x + e - должен получаться один и тот же элемент x. То есть единица группы при прибавлении слева и справа не "сдвигает" элемент группы.

4) ∀x ∈ G ⇒ ∃x⁻¹: x + x⁻¹ = x⁻¹ + x = e. Читается так: У любого элемента x в группе G есть обратный, такой, что результат операции между x и x⁻¹ слева и справа равен единице группы.

Нужно понимать, что операция + в группе может быть совершенно любой. Символ + это всего лишь обозначение данной операции. Правильнее всего сказать что x+y = f(x,y)
где f - некоторая функция, возвращающая элемент группы.

Примеры групп и не групп. (Этот абзац можно пропустить):
Например множество ℤ (целых чисел) является группой если ввести в ней операцию обычного привычного всем нам сложения. Она замкнута, для любого x ∈ ℤ обратным является элемент -x, т.к. x + (-x) = 0. В качестве единицы группы выступает 0. И ассоциативность, разумеется, выполняется.
Однако если рассматривать множество ℤ с введенной на ней операцией стандартного умножения, то такая структура уже не будет являться группой - несмотря на то что имеется единица: x*1 = x и она ассоциативна: (x*y)*z = x*(y*z), во множестве целых чисел не существует обратных элементов ни для каких эементов кроме единицы. Действительно. Например обратным относительно умножения элементом для числа 4 является 1/4, т.к. 4 * (1/4) = 1. Но 1/4 не входит во множество целых чисел. 1/4 - это рациональное число.
Но если убрать из множества ℚ (рациональных чисел) элемент 0, то если ввести на ℚ операцию стандартного умножения, то ℚ будет группой, т.к. там есть и обратные и единица и она ассоциативна и замкнута.

Таким образом попробуем посмотреть. какой должна быть операция на множестве ℝ (действительных чисел), чтобы в нём существовало решение уравнения x⊕1=x. Где ⊕ - это обозначение групповой операции.

Введём операцию x⊕y = x+y-1
Тогда единицей нашей группы будет элемент 1, т.к. x⊕1 = 1⊕x = x + 1 - 1 = x.
То есть x⊕1 = x.
Обратным будет элемент: (2-x), т.к. x⊕(2-x) = (2-x)⊕x = x + (2-x) - 1 = 1 (единица группы)
Ассоциативность, очевидно. выполнена:
(x⊕y)⊕z = (x + y - 1)⊕z = x + y - 1 + z - 1 = x + y + z - 2
x⊕(y⊕z) = x⊕(y+z-1) = x + y + z - 1 - 1 = x + y + z - 2 = (x⊕y)⊕z
Кроме того легко видеть что наша группа замкнута относительно введённой операции.

Итак, мы проверили что множество с введённой нами операцией является группой, посмотрим, как там поживает наше уравнение, если x принадлежит построенной нами группе.

x⊕1 = x. Но когда мы проверяли является ли построенная нами структура группой уже выяснили, что 1 в нашей группе является единицей группы и свойство x⊕1=x в ней очевидно выполняется для любых элементов построенной нами группы.

Занятно, что в построенной нами группе 0⊕0 = -1:)

Автор, очевидно, намекал, что операция + является сложением. Но с точки зрения теории групп - множество ℝ с введенной в ней операцией обычного сложения ничем не отличается от множества ℝ/{0} (множество действительных чисел, но в нём убрали один элемент - 0) с введённой в ней операцией привычного умножения. И в алгебре + обычно означает что используется именно множество ℝ (без выкидывания нуля). В решении это учтено - в самом начале я упомянул, что 0∈ℝ.
Если бы ни это условие, можно было бы просто считать что x⊕y = x*y.

Перед началом работы с этой темой советую посмотреть раздел с терминологией для числовых рядов. Особенно стоит обратить внимание на понятие общего члена ряда. Если у вас есть сомнения в правильности выбора признака сходимости, советую глянуть тему "Выбор признака сходимости числовых рядов" .

Необходимый признак сходимости числовых рядов имеет простую формулировку: общий член сходящегося ряда стремится к нулю. Можно записать этот признак и более формально:

Если ряд $\sum\limits_{n=1}^{\infty}u_n$ сходится, то $\lim_{n\to\infty}u_n=0$.

Часто в литературе вместо словосочетания "необходимый признак сходимости" пишут "необходимое условие сходимости". Однако перейдём к сути: что означает данный признак? А означает он следующее: если $\lim_{n\to\infty}u_n=0$, то ряд может сходиться. Если же $\lim_{n\to\infty}u_n\neq 0$ (или же предела попросту не существует), то ряд $\sum\limits_{n=1}^{\infty}u_n$ расходится.

Стоит обратить внимание, что равенство $\lim_{n\to\infty}u_n=0$ вовсе не означает сходимости ряда. Ряд может как сходиться, так и расходиться. А вот если $\lim_{n\to\infty}u_n\neq 0$, то ряд гарантированно расходится. Если эти нюансы требуют детальных пояснений, то прошу раскрыть примечание.

Что означает словосочетание "необходимое условие"? показать\скрыть

Поясним понятие необходимого условия на примере. Для покупки ручки студенту необходимо иметь 10 рублей. Это можно записать так: если студент покупает ручку, то у него есть 10 рублей. Наличие десяти рублей - это и есть необходимое условие покупки ручки.

Пусть это условие выполнено, т.е. десятка у студента есть. Значит ли это, что он купит ручку? Вовсе нет. Он может купить ручку, а может приберечь деньги на потом. Или купить что-либо иное. Или подарить их кому-то, - вариантов масса:) Иными словами, выполнение необходимого условия покупки ручки (т.е. наличие денег) вовсе не гарантирует покупку этой ручки.

Точно так же и необходимое условие сходимости числового ряда $\lim_{n\to\infty}u_n=0$ вовсе не гарантирует сходимость этого самого ряда. Простая аналогия: если есть деньги, студент может купить ручку, а может и не купить. Если $\lim_{n\to\infty}u_n=0$, ряд может как сходиться, так и расходиться.

Однако что произойдет, если необходимое условие покупки ручки не выполнено, т.е. денег нет? Тогда студент ручку точно не купит. То же самое и с рядами: если необходимое условие сходимости не выполнено, т.е. $\lim_{n\to\infty}u_n\neq 0$, то ряд точно будет расходиться.

Говоря кратко: если необходимое условие выполнено, то следствие может как произойти, так и не произойти. Однако если необходимое условие не выполнено, то следствие точно не произойдёт.

Для наглядности приведу пример двух рядов: $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ и $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$. Общий член первого ряда $u_n=\frac{1}{n}$ и общий член второго ряда $v_n=\frac{1}{n^2}$ стремятся к нулю, т.е.

$$ \lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{1}{n}=0;\; \lim_{n\to\infty}v_n=\lim_{n\to\infty}\frac{1}{n^2}=0. $$

Однако гармонический ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ расходится, а ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ сходится. Выполнение необходимого условия сходимости вовсе не гарантирует сходимости ряда.

Исходя из необходимого условия сходимости ряда можно сформулировать достаточный признак расходимости числового ряда:

Если $\lim_{n\to\infty}u_n\neq 0$, то ряд $\sum\limits_{n=1}^{\infty}u_n$ расходится.

Чаще всего в стандартных примерах необходимый признак сходимости проверяется, если общий член ряда представлен дробью, числитель и знаменатель которой есть некие многочлены. Например, $u_n=\frac{3n^2+2n-1}{5n^2+7}$ (см. пример №1). Или же могут присутствовать корни от многочленов (см. пример №2). Бывают примеры, которые несколько выбиваются из данной схемы, но для стандартных контрольных работ это редкость (см. примеры во второй части этой темы). Подчеркну главное: с помощью необходимого признака нельзя доказать сходимость ряда. Этот признак используют, когда нужно доказать, что ряд расходится.

Пример №1

Исследовать сходимость ряда $\sum\limits_{n=1}^{\infty}\frac{3n^2+2n-1}{5n^2+7}$.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{3n^2+2n-1}{5n^2+7}$. Найдём предел общего члена ряда:

$$ \lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{3n^2+2n-1}{5n^2+7}=\left|\frac{\infty}{\infty}\right|= \lim_{n\to\infty}\frac{\frac{3n^2}{n^2}+\frac{2n}{n^2}-\frac{1}{n^2}}{\frac{5n^2}{n^2}+\frac{7}{n^2}}= \lim_{n\to\infty}\frac{3+\frac{2}{n}-\frac{1}{n^2}}{5+\frac{7}{n^2}}=\frac{3+0-0}{5+0}=\frac{3}{5}. $$

"Предел отношения двух многочленов" . Так как предел общего члена ряда не равен нулю, т.е. $\lim_{n\to\infty}u_n=\frac{3}{5}\neq 0$, то необходимый признак сходимости не выполнен. Следовательно, ряд расходится.

Решение окончено, однако, полагаю, у читателя возникнет вполне резоннный вопрос: а как мы вообще увидели, что нужно проверить выполнение необходимого условия сходимости? Существует немало признаков сходимости числовых рядов, так почему же взяли именно этот? Данный вопрос совсем не праздный. Но так как ответ на него, возможно, будет интересен не всем читателям, то я скрыл его под примечание.

Почему мы начали применять именно необходимый признак сходимости? показать\скрыть

Если говорить нестрого, то вопрос сходимости этого ряда решается ещё до формального исследования. Я не буду касаться такой темы как порядок роста, просто приведу некие общие рассуждения. Давайте посмотрим на общий член ряда $u_n=\frac{3n^2+2n-1}{5n^2+7}$ повнимательнее. Сначала обратимся к числителю. Число (-1), расположенное в числителе, можно отбросить сразу: если $n\to\infty$, то данное число будет пренебрежимо малым по сравнению с остальными слагаемыми.

Посмотрим на степени $n^2$ и $n$, имеющиеся в числителе. Вопрос: какой элемент ($n^2$ или $n$) будет расти быстрее прочих?

Ответ здесь прост: наиболее быстро будет увеличивать свои значения именно $n^2$. Например, когда $n=100$, то $n^2=10\;000$. И этот разрыв между $n$ и $n^2$ будет всё больше и больше. Поэтому все слагаемые, кроме тех, что содержат $n^2$, мы мысленно отбросим. После такого "отбрасывания" в числителе останется $3n^2$. А после проведения подобной процедуры для знаменателя, там останется $5n^2$. И дробь $\frac{3n^2+2n-1}{5n^2+7}$ теперь станет такой: $\frac{3n^2}{5n^2}=\frac{3}{5}$. Т.е. на бесконечности общий член явно не будет стремиться к нулю. Осталось лишь показать это формально, что и было сделано выше.

Частенько в записи общего члена ряда используют такие элементы, как, например, $\sin\alpha$ или $\arctg\alpha$ и тому подобное. Нужно просто помнить, что значения подобных величин не могут выходить за некие числовые границы. Например, каким бы ни было значение $\alpha$, значение $\sin\alpha$ останется в пределах $-1≤\sin\alpha≤ 1$. Т.е., к примеру, мы можем записать, что $-1≤\sin(n!e^n)≤ 1$. А теперь представьте, что в записи общего члена ряда расположено выражение вроде $5n+\sin(n!e^n)$. Сыграет ли синус, который может "колебаться" лишь от -1 до 1, хоть какую-либо значимую роль? Ведь значения $n$ устремляются в бесконечность, а синус не сможет превысить даже единицу! Поэтому при предварительном рассмотрении выражения $5n+\sin(n!e^n)$ синус можно просто отбросить.

Или, для примера, возьмём арктангенс. Каким бы ни было значение аргумента $\alpha$, значения $\arctg\alpha$ будут удовлетворять неравенству $-\frac{\pi}{2}<\arctg\alpha<\frac{\pi}{2}$. Т.е., например, в выражении вроде $7n^3+\sqrt{9n+100}-6\arctg(5^n+587n^{258})$ можно сразу отбросить арктангенс. Да и $\sqrt{9n+100}$ тоже, оставив при этом лишь $7n^3$.

Чтобы определить, какие элементы можно "отбрасывать", а какие нет, нужен небольшой навык. Чаще всего вопрос сходимости ряда можно решить ещё до формального исследования. А формальное исследование в стандартных примерах служит лишь подтверждением интуитивно полученного результата.

Ответ : ряд расходится.

Пример №2

Исследовать ряд $\sum\limits_{n=1}^{\infty}\frac{\sqrt{4n^7+5n^3-4}}{9n^2-n+12}$ на сходимость.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{\sqrt{4n^7+5n^3-4}}{9n^2-n+12}$. Найдём предел общего члена ряда:

$$ \lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{\sqrt{4n^7+5n^3-4}}{9n^2-n+12}=\left|\frac{\infty}{\infty}\right|= \lim_{n\to\infty}\frac{\sqrt{\frac{4n^7}{n^7}+\frac{5n^3}{n^7}-\frac{4}{n^7}}}{\frac{9n^2}{n^{\frac{7}{3}}}-\frac{n}{n^{\frac{7}{3}}}+\frac{12}{n^{\frac{7}{3}}}}= \lim_{n\to\infty}\frac{\sqrt{4+\frac{5}{n^4}-\frac{4}{n^7}}}{\frac{9}{n^\frac{1}{3}}-\frac{1}{n^\frac{4}{3}}+\frac{12}{n^\frac{7}{3}}}=+\infty. $$

Если метод решения данного предела вызывает вопросы, то советую обратиться к теме "Пределы с иррациональностями. Третья часть" (пример №7). Так как предел общего члена ряда не равен нулю, т.е. $\lim_{n\to\infty}u_n\neq 0$, то необходимый признак сходимости не выполнен. Следовательно, ряд расходится.

Немного поговорим с позиции интуитивных рассуждений. В принципе, здесь верно всё то же самое, что было сказано в примечании к решению примера №1. Если мысленно "отбросить" все "несущественные" слагаемые в числителе и знаменателе общего члена ряда, то дробь $\frac{\sqrt{4n^7+5n^3-4}}{9n^2-n+12}$ примет вид: $\frac{\sqrt{4n^7}}{9n^2}=\frac{n^2\sqrt{4n}}{9n^2}=\frac{\sqrt{4n}}{9}$. Т.е. ещё до формального исследования становится ясным, что при $n\to\infty$ общий член ряда к нулю стремиться не станет. К бесконечности - станет, к нулю - нет. Поэтому остаётся лишь показать это строго, что и было сделано выше.

Ответ : ряд расходится.

Пример №3

Исследовать сходимость ряда $\sum\limits_{n=1}^{\infty}\left(5^n\sin\frac{8}{3^n}\right)$.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=5^n\sin\frac{8}{3^n}$. Найдём предел общего члена ряда:

$$ \lim_{n\to\infty}u_n=\lim_{n\to\infty}\left(5^n\sin\frac{8}{3^n}\right)=\lim_{n\to\infty}\frac{\sin\frac{8}{3^n}}{\frac{1}{5^n}}=\left|\frac{0}{0}\right|=\left|\begin{aligned}&\frac{8}{3^n}\to 0;\\&\sin\frac{8}{3^n}\sim\frac{8}{3^n}. \end{aligned}\right|=\lim_{n\to\infty}\frac{\frac{8}{3^n}}{\frac{1}{5^n}}=8\cdot\lim_{n\to\infty}\left(\frac{5}{3}\right)^n=+\infty. $$

Так как предел общего члена ряда не равен нулю, т.е. $\lim_{n\to\infty}u_n\neq 0$, то необходимый признак сходимости не выполнен. Следовательно, ряд расходится.

Пару слов насчёт тех преобразований, которые были осуществлены при вычислении предела. Выражение $5^n$ было помещено в числитель для того, чтобы выражения и в числителе, и в знаменателе стали бесконечно малыми. Т.е. при $n\to\infty$ имеем: $\sin\frac{8}{3^n}\to 0$ и $\frac{1}{5^n}\to 0$. А если мы имеем отношение бесконечно малых, то смело можем применять формулы, указанные в документе "Эквивалентные бесконечно малые функции" (см. таблицу в конце документа). Согласно одной из таких формул, если $x\to 0$, то $\sin x\sim x$. А у нас и есть как раз такой случай: так как $\frac{8}{3^n}\to 0$, то $\sin\frac{8}{3^n}\sim\frac{8}{3^n}$. Иными словами, мы просто-напросто заменяем выражение $\sin\frac{8}{3^n}$ выражением $\frac{8}{3^n}$.

Полагаю, может возникнуть вопрос, зачем же мы преобразовывали выражение $5^n\sin\frac{8}{3^n}$ к виду дроби, - ведь замену можно было сделать и без такого преобразования. Ответ тут таков: замену-то сделать можно, но вот правомерна ли она будет? Теорема про эквивалентные бесконечно малые функции даёт недвусмысленное указание, что подобные замены возможны лишь в выражениях вида $\frac{\alpha(x)}{\beta(x)}$ (при этом $\alpha(x)$ и $\beta(x)$ - бесконечно малые), расположенных под знаком предела. Вот мы и преобразовали наше выражение к виду дроби, подогнав его под требования теоремы.

Ответ : ряд расходится.

Пример №4

Исследовать сходимость ряда $\sum\limits_{n=1}^{\infty}\frac{3^n}{n^2}$.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{3^n}{n^2}$. Вообще-то, вопрос со сходимостью этого ряда легко решается с помощью признака Д"Аламбера . Однако можно применить и необходимый признак сходимости.

Посмотрим повнимательнее на общий член ряда. В числителе расположено выражение $3^n$, которое с возрастанием $n$ увеличивается гораздо быстрее, нежели расположенный в знаменателе $n^2$. Сравните сами: например, если $n=10$, то $3^n=59049$, а $n^2=100$. И этот разрыв стремительно увеличивается с ростом $n$.

Вполне логично предположить, что если $n\to\infty$, то $u_n$ не станет стремиться к нулю, т.е. необходимое условие сходимости выполнено не будет. Осталось лишь проверить эту столь правдоподобную гипотезу и вычислить $\lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{3^n}{n^2}$. Однако перед вычислением этого предела найдём вспомогательный предел функции $y=\frac{3^x}{x^2}$ при $x\to +\infty$, т.е. вычислим $\lim_{x\to +\infty}\frac{3^x}{x^2}$. Зачем мы это делаем: дело в том, что в выражении $u_n=\frac{3^n}{n^2}$ параметр $n$ принимает лишь натуральные значения ($n=1,2,3,\ldots$), а аргумент $x$ функции $y=\frac{3^x}{x^2}$ принимает действительные значения. При нахождении $\lim_{x\to+\infty}\frac{3^x}{x^2}$ мы можем применить правило Лопиталя:

$$ \lim_{x\to +\infty}\frac{3^x}{x^2}=\left|\frac{\infty}{\infty}\right|=|\text{применяем правило Лопиталя}|=\lim_{x\to +\infty}\frac{\left(3^x\right)"}{\left(x^2\right)"}=\lim_{x\to +\infty}\frac{3^x\ln 3}{2x}=\\ =\frac{\ln 3}{2}\cdot\lim_{x\to +\infty}\frac{3^x}{x} =\left|\frac{\infty}{\infty}\right|=|\text{применяем правило Лопиталя}|=\frac{\ln 3}{2}\cdot\lim_{x\to +\infty}\frac{\left(3^x\right)"}{\left(x\right)"}=\\ =\frac{\ln 3}{2}\cdot\lim_{x\to +\infty}\frac{3^x\ln 3}{1}=\frac{\ln^2 3}{2}\cdot\lim_{x\to +\infty}3^x=+\infty. $$

Так как $\lim_{x\to +\infty}\frac{3^x}{x^2}=+\infty$, то $\lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{3^n}{n^2}=+\infty$. Так как $\lim_{n\to\infty}u_n\neq 0$, то необходимое условие сходимости ряда не выполнено, т.е. заданный ряд расходится.

Ответ : ряд расходится.

Иные примеры рядов, сходимость которых проверяется с помощью необходимого признака сходимости, находятся во второй части этой темы.

Знание того, как находить проценты, необходимо каждому человеку. Задачи на нахождение процентов жизнь задает нам постоянно и, бывает, по нескольку раз в день. Это и процент скидки в магазине, и проценты по банковскому вкладу, и многое другое.

Прежде чем понять, как находить проценты, нужно дать определение этому математическому понятию. Итак, одна сотая часть любого числа называется процентом.

Как находить процент от числа

Предположим, нам нужно решить задачу: «В магазине объявлена скидка 5%. На сколько рублей дешевле теперь стоит юбка, первоначальная цена которой была 300 рублей?». Для решения этой задачи нам нужно вычислить, сколько рублей составит 5% от 300 рублей, т.е. найти процент от числа.

Как мы уже говорили, процент – это сотая часть любого числа. Тогда вычислим, сколько составит 1% от 300 рублей. Для этого разделим 300 на сто. Получается, что 1% от 300 равен 3.

Теперь, когда мы знаем чему равен 1%, то без труда можем вычислить, сколько рублей составит 5% от 300 рублей. Нужно просто-напросто выполнить следующее действие: 3 * 5 = 15 (рублей).

Таким образом, юбка стала дешевле на 15 рублей.

Еще легче найти процент от числа с помощью пропорции.

300 рублей – 100%

Х рублей – 5%

Отсюда Х = (300*5)/100=15 рублей.

Как найти процент от суммы

Найти процент от суммы очень легко. Для начала производят сложение всех слагаемых. Затем полученную сумму делят на сто, и полученный результат умножают на число процентов, которое задано условиями задачи.

Например, требуется найти 7% от суммы чисел 35 и 42.

  1. 35 + 42 = 77
  2. 77: 100 = 0,77
  3. 0,77 *7 = 5,39

Как находить проценты с помощью калькулятора

Понять и запомнить, как находить проценты с помощью калькулятора проще всего на конкретном примере. Для этого давайте найдем 9% от 749.

На калькуляторе следует умножить число, от которого мы находим процент на число процентов и нажать значок «%». Обращаем ваше внимание, что при нахождении процентов на калькуляторе не нужно нажимать клавишу «=».

Как это выглядит в нашем примере: 749 * 9 %. Если все набрано правильно, то на экране появится число «67,41», которое и является ответом данной задачи.