Частная сумма ряда. §4. Приближенное вычисление суммы числового ряда

Частная сумма ряда. §4. Приближенное вычисление суммы числового ряда

Числовой ряд является некой последовательностью, которая рассматривается совместно с другой последовательностью (ее еще называют последовательностью частичных сумм). Подобные понятия применяются в математическом и комплексном анализе.

Сумму числового ряда можно легко вычислить в Excel с помощью функции РЯД.СУММ. Рассмотрим на примере, как работает данная функция, а после построим график функций. Научимся применять числовой ряд на практике при подсчете роста капитала. Но для начала немного теории.

Сумма числового ряда

Числовой ряд можно рассматривать как систему приближений к числам. Для его обозначения применяют формулу:

Здесь показана начальная последовательность чисел ряда и правило суммирования:

  • ∑ - математический знак суммы;
  • a i - общий аргумент;
  • i - переменная, правило для изменения каждого последующего аргумента;
  • ∞ - знак бесконечности, «предел», до которого проводится суммирование.

Запись обозначает: суммируются натуральные числа от 1 до «плюс бесконечности». Так как i = 1, то подсчет суммы начинается с единицы. Если бы здесь стояло другое число (например, 2, 3), то суммировать мы начинали бы с него (с 2, 3).

В соответствии с переменной i ряд можно записать развернуто:

А 1 + а 2 + а 3 + а 4 + а 5 + … (до «плюс бесконечности).

Определение суммы числового ряда дается через «частичные суммы». В математике они обозначаются Sn. Распишем наш числовой ряд в виде частичных сумм:

S 2 = а 1 + а 2

S 3 = а 1 + а 2 + а 3

S 4 = а 1 + а 2 + а 3 + а 4

Сумма числового ряда – это предел частичных сумм S n . Если предел конечен, говорят о «сходящемся» ряде. Бесконечен – о «расходящемся».

Сначала найдем сумму числового ряда:

Теперь построим в Excel таблицу значений членов ряда:

Общий первый аргумент берем из формулы: i=3.

Все следующие значения i находим по формуле: =B4+$B$1. Ставим курсор в нижний правый угол ячейки В5 и размножаем формулу.


Найдем значения. Делаем активной ячейку С4 и вводим формулу: =СУММ(2*B4+1). Копируем ячейку С4 на заданный диапазон.



Значение суммы аргументов получаем с помощью функции: =СУММ(C4:C11). Комбинация горячих клавиш ALT+«+» (плюс на клавиатуре).



Функция РЯД.СУММ в Excel

Для нахождения суммы числового ряда в Excel применяется математическая функция РЯД.СУММ. Программой используется следующая формула:

Аргументы функции:

  • х – значение переменной;
  • n – степень для первого аргумента;
  • m – шаг, на который увеличивается степень для каждого последующего члена;
  • а – коэффициенты при соответствующих степенях х.

Важные условия для работоспособности функции:

  • все аргументы обязательные (то есть все должны быть заполнены);
  • все аргументы – ЧИСЛОвые значения;
  • вектор коэффициентов имеет фиксированную длину (предел в «бесконечность» не подойдет);
  • количество «коэффициентов» = числу аргументов.

Вычисление суммы ряда в Excel

Та же функция РЯД.СУММ работает со степенными рядами (одним из вариантов функциональных рядов). В отличие от числовых, их аргументы являются функциями.

Функциональные ряды часто используются в финансово-экономической сфере. Можно сказать, это их прикладная область.

Например, положили в банк определенную сумму денег (а) на определенный период (n). Имеем ежегодную выплату х процентов. Для расчета наращенной суммы на конец первого периода используется формула:

S 1 = a (1 + x).

На конец второго и последующих периодов – вид выражений следующий:

S 2 = a (1 + x) 2 ; S 3 = a (1 + x) 2 и т.д.

Чтобы найти общую сумму:

S n = a (1 + x) + a (1 + x) 2 + a (1 + x) 3 + … + a (1 + x) n

Частичные суммы в Excel можно найти с помощью функции БС().

Исходные параметры для учебной задачи:

Используя стандартную математическую функцию, найдем накопленную сумму в конце срока сумму. Для этого в ячейке D2 используем формулу: =B2*СТЕПЕНЬ(1+B3;4)

Теперь в ячейке D3 решим эту же задачу с помощью встроенной функции Excel: =БС(B3;B1;;-B2)


Результаты одинаковые, как и должно быть.

Как заполнить аргументы функции БС():


  1. «Ставка» - процентная ставка, под которую оформлен вклад. Так как в ячейке В3 установлен процентный формат, мы в поле аргумента просто указали ссылку на эту ячейку. Если было бы указано число, то прописывали бы его сотую долю (20/100).
  2. «Кпер» - число периодов для выплат процентов. В нашем примере – 4 года.
  3. «Плт» - периодические выплаты. В нашем случае их нет. Поэтому поле аргумента не заполняем.
  4. «Пс» - «приведенная стоимость», сумма вклада. Так как мы на время расстаемся с этими деньгами, параметр указываем со знаком «-».

Таким образом, функция БС помогла найти нам сумму функционального ряда.

В Excel есть и другие встроенные функции для нахождения разных параметров. Обычно это функции для работы с инвестиционными проектами, ценными бумагами и амортизационными платежами.

Построение графика функций суммы числового ряда

Построим график функций, отражающий рост капитала. Для этого нам нужно построить график функции являющейся суммой построенного ряда. За пример, возьмем те же данные по вкладу:


В первой строке показана накопленная сумма через год. Во второй – через два. И так далее.

Сделаем еще один столбец, в котором отразим прибыль:


Как мы считали – в строке формул.

На основании полученных данных построим график функций.

Выделим 2 диапазона: A5:A9 и C5:C9. Переходим на вкладку «Вставка» - инструмент «Диаграммы». Выбираем первый график:



Сделаем задачу еще более "прикладной". В примере мы использовали сложные проценты. Они начисляются на наращенную в предыдущем периоде сумму.

Возьмем для сравнения простые проценты. Формула простых процентов в Excel: =$B$2*(1+A6*B6)


Добавим полученные значения в график «Рост капитала».


Какие именно выводы сделает инвестор – очевидно.

Математическая формула частичной суммы функционального ряда (с простыми процентами): S n = a (1 + x*n), где а – первоначальная сумма вклада, х – проценты, n – период.

И т.д. – достаточно самых минимальных знаний о числовых рядах . Необходимо понимать, что такое ряд , уметь расписывать его подробно и не округлять глаза после словосочетаний «ряд сходится», «ряд расходится», «сумма ряда». Поэтому, если ваше настроение совсем на нуле, пожалуйста, уделите 5-10 минут статье Ряды для чайников (буквально первые 2-3 страницы), а потом возвращайтесь сюда и смело начинайте решать примеры!

Следует отметить, что в большинстве случаев найти сумму ряда непросто, и этот вопрос обычно решается через функциональные ряды (доживём-доживём:)) . Так, например, сумма популярного артиста выводится через ряды Фурье . В этой связи на практике почти всегда требуется установить сам факт сходимости , но не найти конкретное число (многие, думаю, уже успели это заметить). Однако среди великого множества числовых рядов есть немногочисленные представители, которые позволяют без особых проблем прикоснуться к святая святых даже полному чайнику. И на вводном уроке я приводил пример бесконечно убывающей геометрической прогрессии , сумма которой легко рассчитывается по известной школьной формуле.

В данной статье мы продолжим рассматривать похожие примеры, кроме того, узнаем строгое определение суммы и попутно познакомимся с некоторыми свойствами рядов. Разомнёмся… да прямо на прогрессиях и разомнёмся:

Пример 1

Найти сумму ряда

Решение : представим наш ряд в виде суммы двух рядов:

Почему в данном случае так можно сделать? Выполненные действия основаны на двух простейших утверждениях:

1) Если сходятся ряды , то будут сходиться и ряды, составленные из сумм или разностей соответствующих членов: . При этом существенно то обстоятельство, что речь идёт о сходящихся рядах. В нашём примере мы заранее знаем , что обе геометрические прогрессии сойдутся, а значит, без всяких сомнений раскладываем исходный ряд в два ряда.

2) Второе свойство ещё очевиднее. Константу можно вынести за пределы ряда: , и это не повлияет на его сходимость или расходимость и итоговую сумму. Зачем выносить константу? Да просто чтобы она «не мешалась под ногами». Но иногда бывает выгодно этого и не делать

Чистовое оформление примера выглядит примерно так:

Дважды используем формулу для нахождения суммы бесконечно убывающей геометрической прогрессии: , где – первый член прогрессии, – основание прогрессии.

Ответ : сумма ряда

Начало решения можно оформить несколько в другом стиле – расписать ряд напрямую и перегруппировать его члены:

Дальше по накатанной.

Пример 2

Найти сумму ряда

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Каких-либо особых изысков здесь нет, но однажды мне попался необычный ряд , который может застать врасплох неискушенного человека. Это… тоже бесконечно убывающая геометрическая прогрессия! Действительно, , и сумма рассчитывается буквально за пару мгновений: .

А сейчас живительный глоток математического анализа, необходимый для решения дальнейших задач:

Что такое сумма ряда?

Строгое определение сходимости/расходимости и суммы ряда в теории даётся через так называемые частичные суммы ряда. Частичные – значит неполные. Распишем частичные суммы числового ряда :

И особую роль играет частичная сумма «эн» членов ряда:

Если предел частичных сумм числового ряда равен конечному числу: , то такой ряд называют сходящимся , а само число – суммой ряда . Если же предел бесконечен либо его не существует, то ряд называют расходящимся .

Вернёмся к демонстрационному ряду и распишем его частичные суммы:

Предел частичных сумм – есть в точности бесконечно убывающая геометрическая прогрессия, сумма которой равна: . Похожий предел мы рассматривали на уроке о числовых последовательностях . Собственно, и сама формула – это прямое следствие вышеизложенных теоретических выкладок (см. 2-ой том матана).

Таким образом, прорисовывается общий алгоритм решения нашей задачи : необходимо составить энную частичную сумму ряда и найти предел . Посмотрим, как это осуществляется на практике:

Пример 3

Вычислить сумму ряда

Решение : на первом шаге нужно разложить общий член ряда в сумму дробей. Используем метод неопределённых коэффициентов :

В результате:

Сразу же полезно провести обратное действие, выполнив тем самым проверку:

Получен общий член ряда в исходном виде, следовательно, разложение в сумму дробей проведено успешно.

Теперь составим частичную сумму ряда . Вообще это делается устно, но один раз я максимально подробно распишу, что откуда взялось:

Как записать совершенно понятно, но чему равен предыдущий член ? В общий член ряда ВМЕСТО «эн» подставляем :

Почти все слагаемые частичной суммы благополучно сокращаются:


Прямо такие пометки и делаем карандашом в тетради. Чертовски удобно.

Осталось вычислить элементарный предел и узнать сумму ряда:

Ответ :

Аналогичный ряд для самостоятельного решения:

Пример 4

Вычислить сумму ряда

Примерный образец чистового оформления решения в конце урока.

Очевидно, что нахождение суммы ряда – это само по себе доказательство его сходимости (помимо признаков сравнения , Даламбера, Коши и др.), о чём, в частности, намекает формулировка следующего задания:

Пример 5

Найти сумму ряда или установить его расходимость

По внешнему виду общего члена можно сразу сказать, как ведёт себя этот товарищ. Без комплексов. С помощью предельного признака сравнения легко выяснить (причём даже устно), что данный ряд будет сходиться вместе с рядом . Но перед нами редкий случай, когда без особых хлопот рассчитывается ещё и сумма.

Решение : разложим знаменатель дроби в произведение. Для этого нужно решить квадратное уравнение :

Таким образом:

Множители лучше расположить в порядке возрастания: .

Выполним промежуточную проверку:

ОК

Таким образом, общий член ряда:

Таким образом:

Не ленимся:

Что и требовалось проверить.

Запишем частичную сумму «эн» членов ряда, при этом обращаем внимание на тот факт, что «счётчик» ряда «начинает работать» с номера . Как и в предыдущих примерах, надёжнее растянуть кобру на приличную длину:

Однако если мы запишем в одну-две строчки, то всё равно будет довольно трудно сориентироваться в сокращениях слагаемых (их таки 3 в каждом члене). И здесь нам на помощь придёт… геометрия. Заставим плясать змею под свою дудочку:

Да, прямо так и пишем в тетради один член под другим и прямо так их вычёркиваем. Кстати, собственное изобретение. Как понимаете, не от самого лёгкого задания в этой жизни =)

В результате всех сокращений получаем:

И, наконец, сумма ряда:

Ответ :

Пример 8

Вычислить сумму ряда

Это пример для самостоятельного решения.

Рассматриваемая задача, конечно, не радует нас разнообразием – на практике встречается либо бесконечно убывающая геометрическая прогрессия, либо ряд с дробно-рациональным общим членом и разложимым многочленом в знаменателе (к слову, далеко не каждый такой многочлен даёт возможность найти сумму ряда). Но, тем не менее, иногда попадаются необычные экземпляры, и по сложившейся доброй традиции я завершаю урок какой-нибудь любопытной задачей.

Для того, чтобы вычислить сумму ряда , нужно просто сложить элементы ряда, заданное количество раз. Например:

В приведённом выше примере это удалось сделать очень просто, поскольку суммировать пришлось конечное число раз. Но что делать, если верхний предел суммирования бесконечность? Например, если нам нужно найти сумму вот такого ряда:

По аналогии с предыдущим примером, мы можем расписать эту сумму вот так:

Но что делать дальше?! На этом этапе необходимо ввести понятие частичной суммы ряда . Итак, частичной суммой ряда (обозначается S n ) называется сумма первых n слагаемых ряда. Т.е. в нашем случае:

Тогда сумму исходного ряда можно вычислить как предел частичной суммы:

Таким образом, для вычисления суммы ряда , необходимо каким-либо способом найти выражение для частичной суммы ряда (S n ). В нашем конкретном случае ряд представляет собой убывающую геометрическую прогрессию со знаменателем 1/3. Как известно сумма первых n элементов геометрической прогрессии вычисляется по формуле:

здесь b 1 - первый элемент геометрической прогрессии (в нашем случае это 1) и q - это знаменатель прогрессии (в нашем случае 1/3). Следовательно частичная сумма S n для нашего ряда равна:

Тогда сумма нашего ряда (S ) согласно определению, данному выше, равна:

Рассмотренные выше примеры являются достаточно простыми. Обычно вычислить сумму ряда гораздо сложнее и наибольшая трудность заключается именно в нахождении частичной суммы ряда. Представленный ниже онлайн калькулятор, созданный на основе системы Wolfram Alpha, позволяет вычислять сумму довольно сложных рядов. Более того, если калькулятор не смог найти сумму ряда, вероятно, что данный ряд является расходящимся (в этом случае калькулятор выводит сообщение типа "sum diverges"), т.е. данный калькулятор также косвенно помогает получить представление о сходимости рядов.

Для нахождения суммы Вашего ряда, необходимо указать переменную ряда, нижний и верхний пределы суммирования, а также выражение для n -ого слагаемого ряда (т.е. собственно выражение для самого ряда).

Сумма всех натуральных чисел может быть записана с использованием следующего числового ряда

Этот, на первый взгляд, совершенно противоречащий интуиции результат, тем не менее может быть строго доказан. Но прежде, чем говорить о доказательстве, нужно сделать отступление и вспомнить основные понятия.

Начнём с того, что «классической» суммой ряда называется предел частичных сумм ряда, если он существует и конечен. Подробности можно найти в википедии и соответствующей литературе. Если конечный предел не существует, то ряд называется расходящимся.

Например, частичная сумма первых k членов числового ряда 1 + 2 + 3 + 4 +… записывается следующим образом

Нетрудно понять, что эта сумма неограниченно растёт при стремлении k к бесконечности. Следовательно, исходный ряд является расходящимся и, строго говоря, не имеет суммы. Существует, однако, множество способов присвоить конечное значение расходящимся рядам.

Ряд 1+2+3+4+… далеко не единственный из расходящихся рядов. Возьмём, например, ряд Гранди

Который тоже расходится, но известно, что метод суммирования Чезаро позволяет присвоить этому ряду конечное значение 1/2. Суммирование по Чезаро заключается в оперировании не частичными суммами ряда, а их арифметическими средними. Позволив себе порассуждать в вольном стиле, можно сказать, что то частичные суммы ряда Гранди осцилируют между 0 и 1, в зависимости от того какой член ряда является последним в сумме (+1 или -1), отсюда и значение 1/2, как арифметическое среднее двух возможных значений частичных сумм.

Другим интересным примером расходящегося ряда является знакопеременный ряд 1 - 2 + 3 - 4 +... , частичные суммы которого также осцилируют. Суммирование методом Абеля позволяет присвоить данному ряду конечное значение 1/4. Отметим, что метод Абеля является, своего рода, развитием метода суммирования по Чезаро, поэтому результат 1/4 несложно осмыслить с точки зрения интуиции.

Здесь важно отметить, что методы суммирования не являются трюками, которые придумали математики, чтобы как-то совладать с расходящимися рядами. Если вы примените суммирование по Чезаро или метод Абеля к сходящемуся ряду, то ответ, который дают эти методы, равен классической сумме сходящегося ряда.

Ни суммирование по Чезаро, ни метод Абеля, однако, не позволяют работать с рядом 1 + 2 + 3 + 4 +..., т. к. средние арифметические частичных сумм, равно как и средние арифметические средних арифметических, расходятся. Кроме того, если значения 1/2 или 1/4 ещё как-то можно принять и соотнести с соответствующими рядами, то -1/12 сложно связать с рядом 1 + 2 + 3 + 4 +..., представляющим собой бесконечную последовательность положительных целых чисел.

Существует несколько способов прийти к результату -1/12. В этой заметке я лишь кратко остановлюсь на одном из них, а именно регуляризации дзета-функцией . Введём дзета-функцию

Подставляя s = -1 , получим исходный числовой ряд 1+2+3+4+…. Проделаем над этой функцией ряд несложных математических действий

Где является эта-функцией Дирихле

При значении s = -1 эта-функция становится уже знакомым нам рядом 1 - 2 + 3 - 4 + 5 -… «сумма» которого равна 1/4. Теперь мы можем легко решить уравнение


Интересно, что этот результат находит своё применение в физике. Например, в теории струн. Обратимся к стр. 22 книги Joseph Polchinski «String Theory»:

Если для кого-то теория струн не является убедительным примером в силу отсутствия доказательств множества следствий этой теории, то можно также упомянуть, что похожие методы фигурируют в квантовой теории поля при попытке рассчитать эффект Казимира .

Чтобы два раза не ходить, ещё пара интересных примеров с дзета-функцией


Для тех, кто захочет получить больше информации по теме отмечу, что написать данную заметку я решил после перевода соответствующей статьи на википедии , где в разделе «Ссылки» вы сможете найти массу дополнительного материала, в основном на английском языке.

Ответ : ряд расходится.

Пример №3

Найти сумму ряда $\sum\limits_{n=1}^{\infty}\frac{2}{(2n+1)(2n+3)}$.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{2}{(2n+1)(2n+3)}$. Составим n-ю частичную сумму ряда, т.е. просуммируем первые $n$ членов заданного числового ряда:

$$ S_n=u_1+u_2+u_3+u_4+\ldots+u_n=\frac{2}{3\cdot 5}+\frac{2}{5\cdot 7}+\frac{2}{7\cdot 9}+\frac{2}{9\cdot 11}+\ldots+\frac{2}{(2n+1)(2n+3)}. $$

Почему я пишу именно $\frac{2}{3\cdot 5}$, а не $\frac{2}{15}$, будет ясно из дальнейшего повествования. Однако запись частичной суммы ни на йоту не приблизила нас к цели. Нам ведь нужно найти $\lim_{n\to\infty}S_n$, но если мы просто запишем:

$$ \lim_{n\to\infty}S_n=\lim_{n\to\infty}\left(\frac{2}{3\cdot 5}+\frac{2}{5\cdot 7}+\frac{2}{7\cdot 9}+\frac{2}{9\cdot 11}+\ldots+\frac{2}{(2n+1)(2n+3)}\right), $$

то эта запись, совершенно верная по форме, ничего нам не даст по сути. Чтобы найти предел, выражение частичной суммы предварительно нужно упростить.

Для этого есть стандартное преобразование, состоящее в разложении дроби $\frac{2}{(2n+1)(2n+3)}$, которая представляет общий член ряда, на элементарные дроби. Вопросу разложения рациональных дробей на элементарные посвящена отдельная тема (см., например, пример №3 на этой странице). Раскладывая дробь $\frac{2}{(2n+1)(2n+3)}$ на элементарные дроби, будем иметь:

$$ \frac{2}{(2n+1)(2n+3)}=\frac{A}{2n+1}+\frac{B}{2n+3}=\frac{A\cdot(2n+3)+B\cdot(2n+1)}{(2n+1)(2n+3)}. $$

Приравниваем числители дробей в левой и правой частях полученного равенства:

$$ 2=A\cdot(2n+3)+B\cdot(2n+1). $$

Чтобы найти значения $A$ и $B$ есть два пути. Можно раскрыть скобки и перегруппировать слагаемые, а можно просто подставить вместо $n$ некие подходящие значения. Сугубо для разнообразия в этом примере пойдём первым путём, а следующем - будем подставлять частные значения $n$. Раскрывая скобки и перегруппировывая слагаемые, получим:

$$ 2=2An+3A+2Bn+B;\\ 2=(2A+2B)n+3A+B. $$

В левой части равенства перед $n$ стоит ноль. Если угодно, левую часть равенства для наглядности можно представить как $0\cdot n+ 2$. Так как в левой части равенства перед $n$ стоит ноль, а в правой части равества перед $n$ стоит $2A+2B$, то имеем первое уравнение: $2A+2B=0$. Сразу разделим обе части этого уравнения на 2, получив после этого $A+B=0$.

Так как в левой части равенства свободный член равен 2, а в правой части равенства свободный член равен $3A+B$, то $3A+B=2$. Итак, имеем систему:

$$ \left\{\begin{aligned} & A+B=0;\\ & 3A+B=2. \end{aligned}\right. $$

Доказательство будем проводить методом математической индукции. На первом шаге нужно проверить, выполнено ли доказываемое равенство $S_n=\frac{1}{3}-\frac{1}{2n+3}$ при $n=1$. Мы знаем, что $S_1=u_1=\frac{2}{15}$, но даст ли выражение $\frac{1}{3}-\frac{1}{2n+3}$ значение $\frac{2}{15}$, если подставить в него $n=1$? Проверим:

$$ \frac{1}{3}-\frac{1}{2n+3}=\frac{1}{3}-\frac{1}{2\cdot 1+3}=\frac{1}{3}-\frac{1}{5}=\frac{5-3}{15}=\frac{2}{15}. $$

Итак, при $n=1$ равенство $S_n=\frac{1}{3}-\frac{1}{2n+3}$ выполнено. На этом первый шаг метода математической индукции закончен.

Предположим, что при $n=k$ равенство выполнено, т.е. $S_k=\frac{1}{3}-\frac{1}{2k+3}$. Докажем, что это же равенство будет выполнено при $n=k+1$. Для этого рассмотрим $S_{k+1}$:

$$ S_{k+1}=S_k+u_{k+1}. $$

Так как $u_n=\frac{1}{2n+1}-\frac{1}{2n+3}$, то $u_{k+1}=\frac{1}{2(k+1)+1}-\frac{1}{2(k+1)+3}=\frac{1}{2k+3}-\frac{1}{2(k+1)+3}$. Согласно сделанному выше предположению $S_k=\frac{1}{3}-\frac{1}{2k+3}$, поэтому формула $S_{k+1}=S_k+u_{k+1}$ примет вид:

$$ S_{k+1}=S_k+u_{k+1}=\frac{1}{3}-\frac{1}{2k+3}+\frac{1}{2k+3}-\frac{1}{2(k+1)+3}=\frac{1}{3}-\frac{1}{2(k+1)+3}. $$

Вывод: формула $S_n=\frac{1}{3}-\frac{1}{2n+3}$ верна при $n=k+1$. Следовательно, согласно методу математической индукции, формула $S_n=\frac{1}{3}-\frac{1}{2n+3}$ верна при любом $n\in N$. Равенство доказано.

В стандартном курсе высшей математики обычно довольствуются "вычёркиванием" сокращающихся слагаемых, не требуя никаких доказательств. Итак, мы получили выражение для n-й частичной суммы: $S_n=\frac{1}{3}-\frac{1}{2n+3}$. Найдём значение $\lim_{n\to\infty}S_n$:

Вывод: заданный ряд сходится и сумма его $S=\frac{1}{3}$.

Второй способ упрощения формулы для частичной суммы.

Честно говоря, я сам предпочитаю именно этот способ:) Давайте запишем частичную сумму в сокращённом варианте:

$$ S_n=\sum\limits_{k=1}^{n}u_k=\sum\limits_{k=1}^{n}\frac{2}{(2k+1)(2k+3)}. $$

Мы получили ранее, что $u_k=\frac{1}{2k+1}-\frac{1}{2k+3}$, поэтому:

$$ S_n=\sum\limits_{k=1}^{n}\frac{2}{(2k+1)(2k+3)}=\sum\limits_{k=1}^{n}\left(\frac{1}{2k+1}-\frac{1}{2k+3}\right). $$

Сумма $S_n$ содержит конечное количество слагаемых, поэтому мы можем переставлять их так, как нам заблагорассудится. Я хочу сначала сложить все слагаемые вида $\frac{1}{2k+1}$, а уж затем переходить к слагаемым вида $\frac{1}{2k+3}$. Это означает, что частичную сумму мы представим в таком виде:

$$ S_n =\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\ldots+\frac{1}{2n+1}-\frac{1}{2n+3}=\\ =\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\ldots+\frac{1}{2n+1}-\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\ldots+\frac{1}{2n+3}\right). $$

Конечно, развёрнутая запись крайне неудобна, поэтому представленное выше равенство можно оформить более компактно:

$$ S_n=\sum\limits_{k=1}^{n}\left(\frac{1}{2k+1}-\frac{1}{2k+3}\right)=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3}. $$

Теперь преобразуем выражения $\frac{1}{2k+1}$ и $\frac{1}{2k+3}$ к одному виду. Я полагаю удобным приводить к виду большей дроби (хотя можно и к меньшей, это дело вкуса). Так как $\frac{1}{2k+1}>\frac{1}{2k+3}$ (чем больше знаменатель, тем меньше дробь), то будем приводить дробь $\frac{1}{2k+3}$ к виду $\frac{1}{2k+1}$.

Выражение в знаменателе дроби $\frac{1}{2k+3}$ я представлю в таком виде:

$$ \frac{1}{2k+3}=\frac{1}{2k+2+1}=\frac{1}{2(k+1)+1}. $$

И сумму $\sum\limits_{k=1}^{n}\frac{1}{2k+3}$ теперь можно записать так:

$$ \sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}. $$

Если равенство $\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$ не вызывает вопросов, то пойдём далее. Если же вопросы есть, то прошу развернуть примечание.

Как мы получили преобразованную сумму? показать\скрыть

У нас был ряд $\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}$. Давайте вместо $k+1$ введём новую переменную, - например, $t$. Итак, $t=k+1$.

Как изменялась старая переменная $k$? А изменялась она от 1 до $n$. Давайте выясним, как же будет изменяться новая переменная $t$. Если $k=1$, то $t=1+1=2$. Если же $k=n$, то $t=n+1$. Итак, выражение $\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}$ теперь стало таким: $\sum\limits_{t=2}^{n+1}\frac{1}{2t+1}$.

$$ \sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}=\sum\limits_{t=2}^{n+1}\frac{1}{2t+1}. $$

У нас есть сумма $\sum\limits_{t=2}^{n+1}\frac{1}{2t+1}$. Вопрос: а не всё ли равно, какую букву использовать в этой сумме? :) Банально записывая букву $k$ вместо $t$, получим следующее:

$$ \sum\limits_{t=2}^{n+1}\frac{1}{2t+1}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}. $$

Вот так и получается равенство $\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$.

Таким образом, частичную сумму можно представить в следующем виде:

$$ S_n=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}. $$

Заметьте, что суммы $\sum\limits_{k=1}^{n}\frac{1}{2k+1}$ и $\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$ отличаются лишь пределами суммирования. Сделаем эти пределы одинаковыми. "Забирая" первый элемент из суммы $\sum\limits_{k=1}^{n}\frac{1}{2k+1}$ будем иметь:

$$ \sum\limits_{k=1}^{n}\frac{1}{2k+1}=\frac{1}{2\cdot 1+1}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}=\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}. $$

"Забирая" последний элемент из суммы $\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$, получим:

$$\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}=\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2(n+1)+1}=\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2n+3}.$$

Тогда выражение для частичной суммы примет вид:

$$ S_n=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}=\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\left(\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2n+3}\right)=\\ =\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\frac{1}{2n+3}=\frac{1}{3}-\frac{1}{2n+3}. $$

Если пропустить все пояснения, то процесс нахождения сокращённой формулы для n-й частичной суммы примет такой вид:

$$ S_n=\sum\limits_{k=1}^{n}u_k =\sum\limits_{k=1}^{n}\frac{2}{(2k+1)(2k+3)} =\sum\limits_{k=1}^{n}\left(\frac{1}{2k+1}-\frac{1}{2k+3}\right)=\\ =\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3} =\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\left(\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2n+3}\right)=\frac{1}{3}-\frac{1}{2n+3}. $$

Напомню, что мы приводили дробь $\frac{1}{2k+3}$ к виду $\frac{1}{2k+1}$. Разумеется, можно поступить и наоборот, т.е. представить дробь $\frac{1}{2k+1}$ в виде $\frac{1}{2k+3}$. Конечное выражение для частичной суммы не изменится. Процесс нахождения частичной суммы в этом случае я скрою под примечание.

Как найти $S_n$, если приводить к виду иной дроби? показать\скрыть

$$ S_n =\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3} =\sum\limits_{k=0}^{n-1}\frac{1}{2k+3}-\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\\ =\frac{1}{3}+\sum\limits_{k=1}^{n-1}\frac{1}{2k+3}-\left(\sum\limits_{k=1}^{n-1}\frac{1}{2k+3}+\frac{1}{2n+3}\right) =\frac{1}{3}-\frac{1}{2n+3}. $$

Итак, $S_n=\frac{1}{3}-\frac{1}{2n+3}$. Находим предел $\lim_{n\to\infty}S_n$:

$$ \lim_{n\to\infty}S_n=\lim_{n\to\infty}\left(\frac{1}{3}-\frac{1}{2n+3}\right)=\frac{1}{3}-0=\frac{1}{3}. $$

Заданный ряд сходится и сумма его $S=\frac{1}{3}$.

Ответ : $S=\frac{1}{3}$.

Продолжение темы нахождения суммы ряда будет рассмотрено во второй и третьей частях.