Как вычислить квадратные метры. Географические объекты с самой большой площадью. Подробнее о площади

Как вычислить квадратные метры. Географические объекты с самой большой площадью. Подробнее о площади

Из книги «Письма Махатм» известно, что еще в конце 19-го века Махатмы дали понять, что причина изменения климата кроется в изменении количества космической пыли в верхних слоях атмосферы. Космическая пыль присутствует в космическом пространстве повсюду, но есть области с повышенным содержанием пыли и есть с меньшим. Солнечная система в своем движении пересекает и те и другие, и это отражается на климате Земли. Но как это происходит, каков механизм воздействия этой пыли на климат?

В данном сообщении обращается внимание на пылевой хвост, но снимок также хорошо демонстрирует реальные размеры пылевой «шубы» – она просто огромна.

Зная, что диаметр Земли равен 12 тыс. км., можно сказать, что толщина её составляет в среднем не менее 2 000 км. Эта «шуба» притянута Землей и напрямую воздействует на атмосферу, сжимая её. Как и было сказано в ответе: «… прямое воздействие последней на внезапные изменения температуры …» – действительно прямое в настоящем смысле этого слова. В случае уменьшения массы космической пыли в этой «шубе», когда Земля проходит космическое пространство с меньшей концентрацией космической пыли, сила сжатия уменьшается и происходит расширение атмосферы, сопровождающееся её охлаждением. Именно это подразумевалось в словах ответа: «…что ледниковые периоды, также как и периоды, когда температура подобна «каменноугольному веку», происходят от уменьшения и увеличения или, скорее, расширения нашей атмосферы, расширения, которое само обязано тому же метеорному присутствию», т.е. обязано меньшему присутствию космической пыли в этой «шубе».

Другой яркой иллюстрацией существования этой наэлектризованной газопылевой «шубы», могут служить уже известные всем электрические разряды в верхней атмосфере, идущие от грозовых облаков в стратосферу и выше. Область этих разрядов занимает высоту от верхней границы грозовых облаков, откуда берут начало голубые «джеты», до 100-130 км, где возникают гигантские вспышки красных «эльфов» и «спрайтов» . Этими разрядами через грозовые облака обмениваются две большие наэлектризованные массы – Земля и масса космической пыли в верхней атмосфере. По сути, «шуба» эта в своей нижней части начинается от верхней границы облакообразования. Ниже этой границы происходит конденсация атмосферной влаги, где частицы космической пыли участвуют в создании ядер конденсации. Далее пыль эта выпадает на земную поверхность вместе с осадками.

В начале 2012 года в Интернете появились сообщения на интересную тему. Вот одно из них : (Комсомольская правда, 28 Фев. 2012)

«Спутники НACA пoкaзaли: нeбo cтaлo oчeнь близкo к Зeмлe. За пocлeднee дecятилeтиe – c мaртa 2000 гoдa по фeврaль 2010 гoдa – выcoтa cлoя oблaкoв cнизилacь на 1 прoцeнт или, другими cлoвaми, на 30-40 мeтрoв. И это cнижeниe в ocнoвнoм oбуcлoвлeнo тем, что вce мeньшe oблaкoв cтaлo фoрмирoвaтьcя на больших выcoтaх, cooбщaeт infoniac.ru. Там их фoрмируeтcя c каждым гoдoм вce мeньшe. К тaкoму трeвoжнoму вывoду пришли учeныe из Унивeрcитeтa Oклeндa (Нoвaя Зeлaндия), прoaнaлизирoвaв дaнныe пeрвых 10 лет измeрeний выcoтнocти oблaкoв, пoлучeнныe мнoгoуглoвым cпeктрoрaдиoмeтрoм (MISR) c кocмичecкoгo aппaрaтa NASA Тeррa.

Пoкa мы тoчнo не знaeм, что вызвaлo cнижeниe выcoты oблaкoв, – признaлcя иccлeдoвaтeль прoфeccoр Рoджeр Дэвис (Roger Davies). – Но вoзмoжнo это прoизoшлo из-за измeнeний в циркуляции, кoтoрaя приводит к фoрмирoвaнию oблaкoв на бoльшoй выcoтe.

Климaтoлoги прeдупрeждaют: ecли oблaкa будут прoдoлжaть cнижaтьcя, то это мoжeт иметь вaжнoe влияние на глoбaльнoe измeнeниe климaтa. Бoлee низкий cлoй oблaчнocти мoжeт пoмoчь Зeмлe oхлaждaтьcя и притoрмoзить глoбaльнoe пoтeплeниe, oтвoдя тeплo в кocмoc. Но он, тaкжe, мoжeт прeдcтaвлять coбoй oтрицaтeльный эффект oбрaтнoй связи, то ecть измeнeниe, вызвaннoe глoбaльным пoтeплeниeм. Oднaкo, пoкa учeныe не могут дать oтвeт на то, мoжнo ли чтo-тo cкaзaть o будущем нaшeгo климaтa, ocнoвывaяcь на данных oблaкoв. Хотя oптимиcты cчитaют, что 10-лeтний пeриoд нaблюдeний cлишкoм кoрoткий, чтобы дeлaть тaкиe глoбaльныe выводы. Статья об этом опубликована в журнале Geophysical Research Letters».

Вполне можно предположить, что положение верхней границы образования облаков напрямую зависит от степени сжатия атмосферы. То, что обнаружили ученые из Новой Зеландии, возможно, есть следствие усиления сжатия, и в дальнейшем может служить индикатором изменения климата. Так, например, при повышении верхней границы облакообразования, можно делать выводы о начале глобального похолодания. В настоящее же время их исследования могут свидетельствовать о том, что глобальное потепление продолжается.

Само потепление происходит неравномерно на отдельных территориях Земли. Есть области, где среднегодовое повышение температуры значительно превышает среднее на всей планете, достигая 1,5 – 2,0°С. Также есть территории, где погода меняется даже в сторону похолодания. Однако средние результаты показывают, что в целом за столетний период среднегодовая температура на Земле увеличилась приблизительно на 0,5°С .

Земная атмосфера – открытая, рассеивающая энергию система, т.е. она поглощает тепло от Солнца и земной поверхности, она же и излучает тепло обратно к поверхности Земли и в открытый космос. Эти тепловые процессы описываются тепловым балансом Земли. При установившемся тепловом равновесии Земля излучает в космос ровно столько тепла, сколько получает его от Солнца. Такой тепловой баланс можно назвать нулевым. Но тепловой баланс может быть положительным при потеплении климата и может быть отрицательным при похолодании. То есть при положительном балансе Земля поглощает и накапливает тепла больше, нежели излучает в космос. При отрицательном балансе – наоборот. В настоящее время Земля имеет явно положительный тепловой баланс. В феврале 2012 года в Интернете появилось сообщение о работе на эту тему ученых из США и Франции. Вот выдержка из сообщения :

«Ученые переопределили тепловой баланс Земли

Наша планета продолжает впитывать больше энергии, чем возвращает в космос, выяснили исследователи из США и Франции. И это несмотря на чрезвычайно долгий и глубокий последний солнечный минимум, который означал сокращение потока лучей, которые поступали от нашей звезды. Группа ученых, возглавляемая Джеймсом Хансеном, директором института космических исследований Годдарда (GISS), выполнила наиболее точный на данный момент подсчет энергетического баланса Земли за период с 2005 по 2010 год включительно.

Оказалось, планета поглощает сейчас в среднем по 0,58 ватта избыточной энергии на каждый квадратный метр поверхности. Такое текущее превышение прихода над расходом. Это значение - несколько ниже, чем свидетельствовали предварительные оценки, однако оно говорит о долгосрочном повышении средней температуры. (…) С учетом других наземных, а также спутниковых измерений Хансен и его коллеги определили, что верхний слой основных океанов впитывает 71% указанной избыточной энергии, Южный океан - еще 12%, абиссаль (зона между 3 и 6 километрами глубины) поглощает 5%, льды - 8% и земля - 4%».

«… в глобальном потеплении последнего столетия нельзя обвинять большие колебания в солнечной активности. Возможно, в будущем влияние Солнца на эти соотношения изменится, если сбудется прогноз о его глубоком сне. Но пока причины изменения климата в последние 50-100 лет приходится искать в другом. …».

Искать, вероятнее всего, следует в изменении среднего давления атмосферы. Принятая в 20-х годах прошлого века Международная стандартная атмосфера (МСА) устанавливает давление 760 мм. рт. ст. на уровне моря, на широте 45° при среднегодовой поверхностной температуре 288К (15°С). Но сейчас уже не та атмосфера, что была 90 – 100 лет назад, т.к. явно изменились её параметры. Сегодняшняя атмосфера в результате потепления должна иметь среднегодовую температуру 15,5°С при новом давлении на уровне моря на той же широте. Стандартная модель земной атмосферы связывает зависимостью температуру и давление от высоты над уровнем моря, где на каждые 1000 метров высоты тропосферы от уровня моря температура понижается на 6,5°С. Нетрудно посчитать, что на 0,5°С приходится 76,9 метров высоты. Но если мы возьмём по этой модели поверхностную температуру 15,5°С, которую мы имеем в результате глобального потепления, то она нам покажет 76,9 метров ниже уровня моря. Это говорит о том, что старая модель не отвечает сегодняшним реалиям. Справочники нам говорят, что при температуре 15°С в нижних слоях атмосферы давление уменьшается на 1 мм. рт. ст. с подъёмом на каждые 11 метров . Отсюда мы можем узнать перепад давления соответствующий перепаду высот 76,9 м ., и это будет самый простой способ определения прироста давления приведшего к глобальному потеплению.

Прирост давления будет равен:

76,9 / 11 = 6,99 мм. рт. ст.

Однако мы можем более точно определить давление, приведшее к потеплению, если обратимся к работе академика (РАЕН) Института океанологии им. П.П.Ширшова РАН О.Г.Сорохтина «Адиабатическая теория парникового эффекта» Эта теория строго научно даёт определение парникового эффекта планетной атмосферы, даёт формулы определяющие поверхностную температуру Земли и температуру на любом уровне тропосферы, а также раскрывает полную несостоятельность теорий о влиянии «парниковых газов» на потепление климата. Эта теория применима для объяснения изменения температуры атмосферы в зависимости от изменения среднего атмосферного давления. Согласно этой теории, как принятая в 20-х годах МСА, так и реальная на сегодняшний момент атмосфера должны подчиняться одной и той же формуле определения температуры на любом уровне тропосферы.

Итак, «Если входным сигналом является так называемая температура абсолютно чёрного тела, характеризующая нагрев тела, удалённого от Солнца на расстояние Земля–Солнце, только за счёт поглощения солнечного излучения (T bb = 278,8 К = +5,6 °С для Земли), то средняя приземная температура T s линейно зависит от неё»:

Т s = b α ∙ Т bb ∙ р α , (1)

где b – масштабный множитель (если измерения проводить в физических атмосферах, то для Земли b = 1,186 атм–1); T bb = 278,8 К = +5,6 °С – нагрев поверхности Земли только за счёт поглощения солнечного излучения; α – показатель адиабаты, среднее значение которого для влажной, поглощающей ИК-излучение тропосферы Земли равно 0,1905» .

Как видно из формулы, температура T s зависит ещё и от давления р.

И, если нам известно, что средняя приземная температура по причине глобального потепления повысилась на 0,5 °С и равна теперь 288,5 К (15,5°С), то мы можем из этой формулы узнать какое давление на уровне моря привело к этому потеплению.

Преобразуем уравнение и найдем это давление:

р α = Т s : (b α Т bb),

р α =288,5 : (1,186 0,1905 278,8) = 1,001705,

р = 1,008983 атм;

или 102235,25 Па;

или 766,84 мм. рт. ст.

Из полученного результата видно, что к потеплению привело повышение среднего атмосферного давления на 6,84 мм. рт. ст. , что довольно близко к полученному выше результату. Это небольшая величина, если учесть, что погодные перепады атмосферного давления в пределах 30 – 40 мм. рт. ст. обычное явление для отдельно взятой местности. Перепад же давления между тропическим циклоном и континентальным антициклоном может достигать 175 мм. рт. ст. .

Итак, сравнительно небольшое среднегодовое повышение атмосферного давления привело к заметному потеплению климата. Это дополнительное сжатие внешними силами говорит о совершении определенной работы. И не имеет значения, сколько времени было затрачено на этот процесс – 1 час, 1 год или 1 столетие. Имеет значение результат этой работы – повышение температуры атмосферы, которое свидетельствует о повышении её внутренней энергии. И, так как атмосфера Земли является открытой системой, то образующийся избыток энергии она должна отдавать в окружающую среду до установления нового уровня теплового баланса с новой температурой. Окружающей средой для атмосферы является земная твердь с океаном и открытый космос. Земная твердь с океаном, как отмечалось выше, в настоящее время « … продолжает впитывать больше энергии, чем возвращает в космос» . А вот с излучением в космос дело обстоит иначе. Радиационное излучение тепла в космос характеризуется радиационной (эффективной) температурой T e , под которой эта планета видна из космоса, и которая определяется так:

Где σ = 5,67 . 10 –5 эрг/(см 2 . с. К 4) – постоянная Стефана–Больцмана, S – солнечная постоянная на удалении планеты от Солнца, А – альбедо, или отражательная способность, планеты, в основном регулируемая её облачным покровом. Для Земли S = 1,367 . 10 6 эрг/(см 2 . с), А ≈ 0,3 , следовательно T e = 255 К (-18 °С);

Температура 255 К (-18 °С) соответствует высоте 5000 метров, т.е. высоте интенсивного облакообразования, высота которого, как утверждают ученые из Новой Зеландии, снизилась на 30-40 метров за последние 10 лет. Следовательно, площадь сферы, излучающей тепло в космос, при сжатии атмосферы извне уменьшается, а, значит, уменьшается и излучение тепла в космос. Этот фактор явно влияет в сторону потепления. Далее, из формулы (2) видно, что радиационная температура излучения Земли зависит практически только от А – альбедо Земли. Но любое повышение поверхностной температуры усиливает испарение влаги и увеличивает облачность Земли, а это, в свою очередь, повышает отражательную способность земной атмосферы, а значит, и альбедо планеты. Повышение же альбедо приводит к понижению радиационной температуры излучения Земли, следовательно, к снижению теплового потока уходящего в космос. Здесь надо отметить, что в результате повышения альбедо увеличивается отражение солнечного тепла от облаков в космос и сокращается его поступление на земную поверхность. Но даже если влияние этого фактора, действующего в противоположном направлении, полностью компенсирует влияние фактора повышения альбедо, то и тогда налицо факт того, что весь избыток тепла остаётся на планете . Вот почему даже незначительное изменение среднего атмосферного давления ведёт к заметному изменению климата. Повышению атмосферного давления способствует также и рост самой атмосферы за счет увеличения количества газов привносимых с метеорным веществом. Такова в общих чертах схема глобального потепления от повышения атмосферного давления, первоначальная причина которого лежит в воздействии космической пыли на верхнюю атмосферу.

Как уже было отмечено, потепление происходит неравномерно на отдельных территориях Земли. Следовательно, где-то повышения давления нет, где-то даже отмечено понижение, а там где повышение имеет место, оно может объясняться влиянием глобального потепления, ведь температура и давление взаимозависимы в стандартной модели земной атмосферы. Само же глобальное потепление объясняется повышением содержания в атмосфере техногенных «парниковых газов». Но в действительности это не так.

Чтобы убедиться в этом, обратимся еще раз к «Адиабатической теории парникового эффекта» академика О.Г.Сорохтина, где научно доказано, что так называемые «парниковые газы», никакого отношения к глобальному потеплению не имеют. И, что, если даже заменить воздушную атмосферу Земли на атмосферу, состоящую из углекислого газа, то и это не приведёт к потеплению, а наоборот, к некоторому похолоданию. Единственный вклад в потепление «парниковые газы» могут внести приращением массы ко всей атмосфере и, соответственно повышением давления. Но, как пишется в этой работе:

«По разным оценкам, в настоящее время за счёт сжигания природного топлива в атмосферу поступает около 5–7 млрд т углекислого газа, или 1,4–1,9 млрд т чистого углерода, что не только снижает теплоёмкость атмосферы, но и несколько увеличивает её общее давление. Эти факторы действуют в противоположных направлениях, в результате средняя температура земной поверхности меняется очень мало. Так, например, при двукратном увеличении концентрации СО 2 в земной атмосфере с 0,035 до 0,07% (по объёму), которое ожидается к 2100 г., давление должно увеличиться на 15 Па, что вызовет повышение температуры примерно на 7,8 . 10 –3 К».

0,0078°С – это действительно очень мало. Так наука начинает признавать, что на современное глобальное потепление не влияют ни колебания солнечной активности , ни увеличение концентрации в атмосфере техногенных «парниковых» газов. И взоры ученых обращаются на космическую пыль. Об этом говорит следующее сообщение из Интернета:

«В изменении климата виновата космическая пыль? (05 апреля 2012,) (…) Новая исследовательская программа была начата с целью узнать, сколько этой пыли входит в атмосферу Земли, и как она может влиять на наш климат. Считается, что точная оценка пыли также поможет в понимании того, как частицы переносятся через разные слои атмосферы Земли. Ученые из университета Лидса уже представили проект по изучению влияния космической пыли на земную атмосферу после того, как получили грант 2,5 млн. евро от Европейского исследовательского совета. Проект рассчитан на 5 лет исследований. Международная команда состоит из 11 ученых в Лидсе и еще 10 исследовательских групп в США и Германии (…)» .

Обнадеживающее сообщение. Похоже, что наука приближается к открытию настоящей причины изменений климата.

В связи со всем вышеизложенным можно добавить, что в будущем предвидится пересмотр основных понятий и физических параметров, касающихся атмосферы Земли. Классическое определение, что атмосферное давление создаётся гравитационным притяжением воздушного столба к Земле, становится не совсем верным. Отсюда также неверной становится величина массы атмосферы, вычисленная из атмосферного давления действующего на всю площадь поверхности Земли. Всё становится гораздо сложнее, т.к. существенную составляющую атмосферного давления представляет сжатие атмосферы внешними силами магнитного и гравитационного притяжения массы космической пыли, насыщающей верхние слои атмосферы.

Это дополнительное сжатие атмосферы Земли было всегда, во все времена, т.к. нет в космическом пространстве областей свободных от космической пыли. И именно благодаря этому обстоятельству Земля имеет достаточно тепла для развития биологической жизни. Как и было сказано в ответе Махатмы:

«…что тепло, которое получает Земля от лучей солнца, является, в самой большей степени, лишь третью, если не меньше, количества, получаемого ею непосредственно от метеоров», т.е. от воздействия метеорной пыли.

г. Усть-Каменогорск, Казахстан, 2013 г.

КОСМИЧЕСКАЯ ПЫЛЬ, твёрдые частицы с характерными размерами от около 0,001 мкм до около 1 мкм (и, возможно, до 100 мкм и более в межпланетной среде и протопланетных дисках), обнаруженные почти во всех астрономических объектах: от Солнечной системы до очень далёких галактик и квазаров. Характеристики пыли (концентрация частиц, химический состав, размер частиц и т. д.) значительно меняются от одного объекта к другому, даже для объектов одного типа. Космическая пыль рассеивает и поглощает падающее излучение. Рассеянное излучение с той же длиной волны, что и падающее, распространяется во все стороны. Излучение, поглощённое пылинкой, трансформируется в тепловую энергию, и частица излучает обычно в более длинноволновой области спектра по сравнению с падающим излучением. Оба процесса дают вклад в экстинкцию - ослабление излучения небесных тел пылью, находящейся на луче зрения между объектом и наблюдателем.

Пылевые объекты исследуют почти во всём диапазоне электромагнитных волн - от рентгеновского до миллиметрового. Электрическое дипольное излучение быстро вращающихся ультрамелких частиц, по-видимому, даёт некоторый вклад в микроволновое излучение на частотах 10-60 ГГц. Важную роль играют лабораторные эксперименты, в которых измеряют показатели преломления, а также спектры поглощения и матрицы рассеяния частиц - аналогов космических пылинок, моделируют процессы образования и роста тугоплавких пылинок в атмосферах звёзд и протопланетных дисках, изучают образование молекул и эволюцию летучих пылевых компонентов в условиях, похожих на существующие в тёмных межзвёздных облаках.

Космическую пыль, находящуюся в различных физических условиях, непосредственно изучают в составе упавших на поверхность Земли метеоритов, в верхних слоях земной атмосферы (межпланетная пыль и остатки небольших комет), при полётах КА к планетам, астероидам и кометам (околопланетная и кометная пыль) и за пределы гелиосферы (межзвёздная пыль). Наземные и космические дистанционные наблюдения космической пыли охватывают Солнечную систему (межпланетная, околопланетная и кометная пыль, пыль около Солнца), межзвёздную среду нашей Галактики (межзвёздная, околозвёздная и небулярная пыль) и других галактик (внегалактическая пыль), а также очень удалённые объекты (космологическая пыль).

Частицы космической пыли в основном состоят из углеродистых веществ (аморфный углерод, графит) и магниево-железистых силикатов (оливины, пироксены). Они конденсируются и растут в атмосферах звёзд поздних спектральных классов и в протопланетарных туманностях, а затем выбрасываются в межзвёздную среду давлением излучения. В межзвёздных облаках, особенно плотных, тугоплавкие частицы продолжают расти в результате аккреции атомов газа, а также при столкновении и слипании частиц друг с другом (коагуляции). Это ведёт к появлению оболочек из летучих веществ (в основном льдов) и к образованию пористых агрегатных частиц. Разрушение пылинок происходит в результате распыления в ударных волнах, возникающих после вспышек сверхновых звёзд, или испарения в процессе звездообразования, начавшемся в облаке. Оставшаяся пыль продолжает эволюционировать вблизи сформировавшейся звезды и позднее проявляется в форме межпланетного пылевого облака или кометных ядер. Парадоксально, но вокруг проэволюционировавших (старых) звёзд пыль является «свежей» (недавно образовавшейся в их атмосфере), а вокруг молодых звёзд - старой (проэволюционировавшей в составе межзвёздной среды). Предполагается, что космологическая пыль, возможно существующая в удалённых галактиках, сконденсировалась в выбросах вещества после взрывов массивных сверхновых звёзд.

Лит. смотри при ст. Межзвёздная пыль.

Космическая пыль на Земле чаще всего находится в определенных слоях океанического дна, ледяных щитах полярных областей планеты, отложениях торфа, труднодоступных местах пустыни и метеоритных кратерах. Размер данного вещества - менее 200 нм, что делает его изучение проблематичным.

Обычно понятие космической пыли включает в себя размежевание на межзвездную и межпланетную разновидность. Впрочем, все это является очень условным. Наиболее удобным вариантом для изучения подобного явления считают исследование пыли из космоса на границах Солнечной системы или за ее пределами.

Причина такого проблематичного подхода к исследованию объекта заключается в том, что свойства внеземной пыли кардинально меняются при нахождении рядом с такой звездой, как Солнце.

Теории происхождения космической пыли


Потоки космической пыли постоянно атакуют поверхность Земли. Возникает вопрос, откуда берется это вещество. Его происхождение дает почву для множества дискуссий среди специалистов в этой области.

Выделяют такие теории образования космической пыли:

  • Распад небесных тел . Некоторые ученые считают, что космическая пыль - не что иное, как результат разрушения астероидов, комет и метеоритов.
  • Остатки облака протопланетного типа . Есть версия, по которой космическую пыль относят к микрочастицам протопланетного облака. Впрочем, такое предположение вызывает некоторые сомнения по причине недолговечности мелкодисперсного вещества.
  • Результат взрыва на звездах . Вследствие этого процесса, по мнению некоторых специалистов, происходит мощный выброс энергии и газа, что приводит к образованию космической пыли.
  • Остаточные явления после формирования новых планет . Так называемый строительный «мусор» стал основой для возникновения пыли.
По некоторым исследованиям, определенная часть составляющей космической пыли возникла раньше формирования Солнечной системы, что делает это вещество еще более интересным для дальнейшего изучения. На это стоит обратить внимание при оценке и анализе подобного внеземного явления.

Основные разновидности космической пыли


Конкретной классификации видов космической пыли на данный момент не существует. Можно разграничить подвиды по визуальным характеристикам и местообразованию этих микрочастиц.

Рассмотрим семь групп космической пыли в атмосфере, различных по внешним показателям:

  1. Серые обломки неправильной формы. Это остаточные явления после столкновения метеоритов, комет и астероидов размером не более 100-200 нм.
  2. Частицы шлакообразного и пепловидного образования. Такие объекты сложны в опознании исключительно по внешним признакам, потому что претерпели изменения, пройдя через атмосферу Земли.
  3. Зерна округлой формы, что по параметрам схожи с песком черного цвета. Внешне они напоминают порошок магнетита (магнитного железняка).
  4. Черные окружности небольшого размера, обладающие характерным блеском. Их диаметр не превышает отметки 20 нм, что делает их изучение кропотливым занятием.
  5. Более крупные шарики того же цвета с шероховатой поверхностью. Их размер достигает 100 нм и позволяет детально изучить их состав.
  6. Шарики определенной окраски с преобладанием черных и белых тонов с включениями газа. Эти микрочастицы космического происхождения состоят из силикатной основы.
  7. Шары разнородной структуры из стекла и металла. Такие элементы характеризуются микроскопическими размерами в пределах 20 нм.
По астрономическому расположению выделяют 5 групп космической пыли:
  • Пыль, находящаяся в межгалактическом пространстве. Данный вид может искажать размеры расстояний при определенных расчетах и способен изменять цвет космических объектов.
  • Образования в пределах Галактики. Пространство в этих пределах всегда заполнено пылью от разрушения космических тел.
  • Вещество, сконцентрированное между звездами. Оно наиболее интересно благодаря наличию оболочки и ядра твердой консистенции.
  • Пыль, расположившаяся рядом с определенной планетой. Находится она обычно в кольцевой системе небесного тела.
  • Облака из пыли вокруг звезд. Они кружатся по орбитальной траектории самой звезды, отражая ее свет и создавая туманность.
Три группы по общему удельному весу микрочастиц выглядят так:
  1. Металлическая группа. Представители этого подвида имеют удельный вес более пяти граммов на кубический сантиметр, и основа их состоит преимущественно из железа.
  2. Группа на силикатной основе. Основа - прозрачное стекло с удельным весом приблизительно три грамма на кубический сантиметр.
  3. Смешанная группа. Само название этого объединения свидетельствует о наличии в структуре микрочастиц как стекла, так и железа. Основа также включает в себя магнетические элементы.
Четыре группы по сходству внутреннего строения микрочастиц космической пыли:
  • Сферулы с полым наполнением. Эта разновидность часто встречается в местах падения метеоритов.
  • Сферулы металлического образования. Такой подвид имеет ядро из кобальта и никеля, а также оболочку, которая окислилась.
  • Шары однородного сложения. Такие крупинки имеют окисленную оболочку.
  • Шарики с силикатной основой. Наличие газовых вкраплений придает им вид обычных шлаков, а иногда и пены.

Следует помнить, что эти классификации весьма условны, но служат определенным ориентиром для обозначения видов пыли из космоса.

Состав и характеристика компонентов космической пыли


Рассмотрим подробнее, из чего состоит космическая пыль. Существует некая проблема при определении состава данных микрочастиц. В отличие от газообразных веществ, твердые тела имеют непрерывающийся спектр с относительно небольшим наличием полос, что размыты. Вследствие этого затрудняется идентификация космических пылинок.

Состав космической пыли можно рассмотреть на примере основных моделей данного вещества. К ним относятся такие подвиды:

  1. Ледяные частицы, в структуру которых входит ядро с тугоплавкой характеристикой. Оболочка подобной модели состоит из легких элементов. В частицах крупного размера находятся атомы с элементами магнитного свойства.
  2. Модель MRN, состав которой определяется наличием силикатных и графитовых вкраплений.
  3. Оксидная космическая пыль, в основу которой входят двухатомные окислы магния, железа, кальция и кремния.
Общая классификация по химическому составу космической пыли:
  • Шарики с металлической природой образования. В состав таких микрочастиц входит такой элемент, как никель.
  • Металлические шарики с наличием железа и отсутствием никеля.
  • Окружности на силиконовой основе.
  • Железо-никелевые шарики неправильной формы.
Более конкретно можно рассмотреть состав космической пыли на примере обнаруженной в океаническом иле, осадочных породах и ледниках. Их формула будет мало отличаться одна от другой. Находки при изучении морского дна представляют из себя шарики с силикатной и металлической основой с присутствием таких химических элементов, как никель и кобальт. Также в недрах водной стихии были обнаружены микрочастицы с наличием алюминия, кремния и магния.

Почвы благодатны на присутствие космического материала. Особенно большое количество сферул обнаружено в местах падения метеоритов. Основой для них послужили никель и железо, а также всевозможные минералы типа троилита, кохенита, стеатита и других составляющих.

Ледники также таят в своих глыбах пришельцев из космоса в виде пыли. Силикат, железо и никель служат основой найденных сферул. Все добытые частицы были классифицированы в 10 четко разграниченных групп.

Трудности в определении состава изучаемого объекта и дифференцирование его от примесей земного происхождения оставляют этот вопрос открытым для дальнейших исследований.

Влияние космической пыли на процессы жизнедеятельности

Влияние данной субстанции до конца не изучено специалистами, что дает большие возможности в плане дальнейшей деятельности в этом направлении. На определенной высоте при помощи ракет обнаружили специфический пояс, состоящий из космической пыли. Это дает основание утверждать, что подобное внеземное вещество воздействует на некоторые процессы, происходящие на планете Земля.

Влияние космической пыли на верхние слои атмосферы


Последние исследования свидетельствуют о том, что количество космической пыли способно влиять на изменение верхних слоев атмосферы. Данный процесс очень значим, потому что ведет к определенным колебаниям в климатической характеристике планеты Земля.

Огромное количество пыли, возникшей от столкновения астероидов, заполняет пространство вокруг нашей планеты. Ее количество достигает почти 200 тонн в сутки, что, по мнению ученых, не может не оставить своих последствий.

Наиболее подвержено этой атаке, по мнению тех же специалистов, северное полушарие, климат которого предрасположен к холодным температурам и сырости.

Вопрос воздействия космической пыли на образование облаков и изменение климата еще не изучен в достаточной степени. Новые исследования в этой области порождают все больше вопросов, ответы на которые пока не получены.

Влияние пыли из космоса на преобразование океанического ила


Облучение космической пыли солнечным ветром приводит к тому, что эти частицы попадают на Землю. Статистика свидетельствует о том, что наиболее легкий из трех изотопов гелия в огромном количестве попадает через пылинки из космоса в океанический ил.

Поглощение минералами железомарганцевого происхождения элементов из космоса послужило основой в формировании уникальных рудных образований на океанском дне.

На данный момент количество марганца в областях, которые близки к полярному кругу, ограничено. Все это связано с тем, что космическая пыль не поступает в Мировой океан в тех районах из-за ледяных щитов.

Влияние космической пыли на состав воды Мирового океана


Если рассматривать ледники Антарктиды, то они поражают количеством найденных в них остатков метеоритов и наличием космической пыли, которая в сотню раз превышает обычный фон.

Чрезмерно повышенная концентрация того же гелия-3, ценных металлов в виде кобальта, платины и никеля позволяет с уверенностью утверждать факт вмешательства космической пыли в состав ледникового щита. При этом вещество внеземного происхождения остается в первозданном и не разбавленном водами океана виде, что само по себе является уникальным явлением.

По мнению некоторых ученых, количество космической пыли в таких своеобразных ледяных щитах за последний миллион лет насчитывает порядка нескольких сотен триллионов образований метеоритного происхождения. В период потепления эти покровы тают и несут в Мировой океан элементы космической пыли.

Смотрите видео о космической пыли:


Данное космическое новообразование и его влияние на некоторые факторы жизнедеятельности нашей планеты еще мало изучено. Важно помнить, что вещество способно влиять на изменения климата, структуру океанического дна и концентрацию определенных веществ в водах Мирового океана. Фото космической пыли свидетельствуют о том, как много еще загадок таят в себе эти микрочастицы. Все это делает изучение подобного интересным и актуальным!

Сверхновая SN2010jl Фото: NASA/STScI

Астрономы впервые наблюдали в реальном времени образование космической пыли в ближайших окрестностях сверхновой, что позволило им объяснить это загадочное явление, происходящее в два этапа. Процесс начинается вскоре после взрыва, но продолжается ещё много лет, пишут исследователи в журнале "Nature".

Мы все состоим из звездной пыли, из элементов, которые и являются строительным материалом для новых небесных тел. Астрономы давно предполагали, что эта пыль образуется при взрыве звезд. Но как именно это происходит и как пылевые частицы не разрушаются в окрестностях галактик, где идёт активное оставалось до сих пор загадкой.

Этот вопрос впервые прояснили наблюдения, сделанные с помощью Very Large Telescope в обсерватории Паранал на севере Чили. Международная исследовательская группа под руководством Кристы Галл (Christa Gall) из датского университета Орхуса исследовали сверхновую, возникшую в 2010 году в галактике, удаленной от нас на 160 млн. световых лет. Исследователи в течение месяцев и первых лет наблюдали с каталожным номером SN2010jl в видимом и инфракрасном световом диапазоне с помощью спектрографа X-Shooter.

„Когда мы комбинировали данные наблюдений, мы смогли сделать первое измерение поглощения различных длин волн в пыли вокруг сверхновой, - объясняет Галл. - Это позволило нам узнать об этой пыли больше, чем известно было раньше". Таким образом стало возможным более подробно изучить различные размеры пылинок и их образование.

Пыль в непосредственной близости от сверхновой возникает в два этапа Фото: © ESO/M. Kornmesser

Как оказалось, пылевые частицы величиной более тысячной доли миллиметра образуются в плотном материале вокруг звезды относительно быстро. Размеры этих частиц удивительно велики для космических пылинок, что делает их устойчивыми к разрушению галактическими процессами. „Наше доказательство возникновения больших частиц пыли вскоре после взрыва сверхновой означает, что должен быть быстрый и эффективный способ их образования", - добавляет соавтор Йенс Хйорт (Jens Hjorth) из Университета Копенгагена. "Но мы пока не понимаем, как именно это происходит."

Тем не менее, у астрономов уже есть теория, базирующаяся на их наблюдениях. Исходя из неё, образование пыли протекает в 2 этапа:

  1. Звезда выталкивает материал в своё окружающее пространство незадолго до взрыва. Затем идет и распространяется ударная волна сверхновой, за которой создается прохладная и плотная оболочка газа - окружающая среда, в которые могут конденсироваться и расти пылевые частицы из ранее вытолкнутого материала.
  2. На второй стадии, через несколько сотен дней после взрыва сверхновой, добавляется материал, который был выброшен в самим взрывом и происходит ускоренный процесс образования пыли.

«В последнее время астрономы обнаружили много пыли в остатках сверхновых, которые возникли после взрыва. Тем не менее, они также нашли доказательства небольшого количества пыли, которая фактически возникла в самой сверхновой. Новые наблюдения объясняют, как может разрешаться это кажущееся противоречие", - пишет в заключение Криста Галл.