4 процента от 400. Калькулятор процентов онлайн. Как найти процент от числа. Как посчитать проценты с помощью соотношений

Содержание статьи

ЭЛЕКТРОН, элементарная частица с отрицательным электрическим зарядом, входящая в состав всех атомов, а следовательно, и любого обычного вещества. Это – самая легкая из электрически заряженных частиц. Электроны участвуют почти во всех электрических явлениях. В металле часть электронов не связана с атомами и может свободно перемещаться, благодаря чему металлы хорошо проводят электричество. В плазме, т.е. ионизованном газе, положительно заряженные атомы также перемещаются свободно, но, имея гораздо большую массу, движутся значительно медленнее электронов, а потому вносят меньший вклад в электрический ток. Благодаря малой массе электрон оказался частицей, наиболее вовлеченной в развитие квантовой механики, частной теории относительности и их объединение – релятивистскую квантовую теорию поля. Считается, что в настоящее время полностью известны уравнения, описывающие поведение электронов во всех реально осуществимых физических условиях. (Правда, решение этих уравнений для систем, содержащих большое число электронов, таких, как твердое тело и конденсированная среда, все еще сопряжено с трудностями.)

Все электроны тождественны и подчиняются статистике Ферми – Дирака . Это обстоятельство выражается в принципе Паули, согласно которому два электрона не могут находиться в одном и том же квантовом состоянии. Одно из следствий принципа Паули заключается в том, что состояния наиболее слабо связанных электронов – валентных электронов, определяющих химические свойства атомов, – зависят от атомного номера (зарядового числа), который равен числу электронов в атоме. Атомный номер равен также заряду ядра, выраженному в единицах заряда протона е . Другое следствие состоит в том, что электронные «облака», окутывающие ядра атомов, сопротивляются их перекрытию, вследствие чего обычное вещество обладает свойством занимать определенное пространство. Как и полагается элементарной частице, число основных характеристик электрона невелико, а именно масса (m e » 0,51 МэВ » 0,91Ч 10 –27 г), заряд (- e » - 1,6Ч 10 –19 Кл) и спин (1 / 2 ћ » 1/ 2 Ч 0,66Ч 10 –33 ДжЧ с, где – постоянная Планка h , деленная на 2p ). Через них выражаются все остальные характеристики электрона, например магнитный момент (» 1,001m 3 » 1,001Ч 0,93Ч 10 –23 Дж/Тл), за исключением еще двух констант, характеризующих слабое взаимодействие электронов (см . ниже ).

Первые указания на то, что электричество не является непрерывным потоком, а переносится дискретными порциями, были получены в опытах по электролизу. Результатом явился один из законов Фарадея (1833): заряд каждого иона равен целому кратному заряда электрона, называемого ныне элементарным зарядом е . Наименование «электрон» вначале относилось к этому элементарному заряду. Электрон же в современном смысле слова был открыт Дж.Томсоном в 1897. Тогда было уже известно, что при электрическом разряде в разреженном газе возникают «катодные лучи», несущие отрицательный электрический заряд и идущие от катода (отрицательно заряженного электрода) к аноду (положительно заряженному электроду). Исследуя влияние электрического и магнитного полей на пучок катодных лучей, Томсон пришел к выводу: если предположить, что пучок состоит из частиц, заряд которых не превышает элементарного заряда ионов е , то масса таких частиц будет в тысячи раз меньше массы атома. (Действительно, масса электрона составляет примерно 1/1837 массы легчайшего атома, водорода.) Незадолго до этого Х.Лоренц и П.Зееман уже получили доказательства того, что электроны входят в состав атомов: исследования воздействия магнитного поля на атомные спектры (эффект Зеемана) показали, что у заряженных частиц в атоме, благодаря наличию которых свет взаимодействует с атомом, отношение заряда к массе такое же, как и установленное Томсоном для частиц катодных лучей.

Первая попытка описать поведение электрона в атоме связана с моделью атома Бора (1913). Представление о волновой природе электрона, выдвинутое Л.де Бройлем (1924) (и подтвержденное экспериментально К.Дэвиссоном и Л.Джермером в 1927), послужило основой волновой механики, разработанной Э.Шрёдингером в 1926. Одновременно на основании анализа атомных спектров С.Гаудсмитом и Дж.Уленбеком (1925) был сделан вывод о наличии у электрона спина. Строгое волновое уравнение для электрона было получено П.Дираком (1928). Уравнение Дирака согласуется с частной теорией относительности и адекватно описывает спин и магнитный момент электрона (без учета радиационных поправок).

Из уравнения Дирака вытекало существование еще одной частицы – положительного электрона, или позитрона, с такими же значениями массы и спина, как у электрона, но с противоположным знаком электрического заряда и магнитного момента. Формально уравнение Дирака допускает существование электрона с полной энергией либо і 2 ( 2 – энергия покоя электрона), либо Ј – 2 ; отсутствие радиационных переходов электронов в состояния с отрицательными энергиями можно было объяснить, предположив, что эти состояния уже заняты электронами, так что, согласно принципу Паули, для дополнительных электронов нет места. Если из этого дираковского «моря» электронов с отрицательными энергиями удалить один электрон, то возникшая электронная «дырка» будет вести себя как положительно заряженный электрон. Позитрон был обнаружен в космических лучах К.Андерсоном (1932).

По современной терминологии электрон и позитрон являются античастицами по отношению друг к другу. Согласно релятивистской квантовой механике, для частиц любого вида существуют соответствующие античастицы (античастица электрически нейтральной частицы может совпадать с ней). Отдельно взятый позитрон столь же стабилен, как и электрон, время жизни которого бесконечно, поскольку не существует более легких частиц с зарядом электрона. Однако в обычном веществе позитрон рано или поздно соединяется с электроном. (Вначале электрон и позитрон могут на короткое время образовать «атом», так называемый позитроний, сходный с атомом водорода, в котором роль протона выполняет позитрон.) Такой процесс соединения называется электрон-позитронной аннигиляцией; в нем полная энергия, импульс и момент импульса сохраняются, а электрон и позитрон превращаются в гамма-кванты, или фотоны, – обычно их два. (С точки зрения «моря» электронов данный процесс представляет собой радиационный переход электрона в так называемую дырку – незанятое состояние с отрицательной энергией.) Если скорости электрона и позитрона не очень велики, то энергия каждого из двух гамма-квантов приблизительно равна 2 . Это характеристическое излучение аннигиляции позволяет обнаруживать позитроны. Наблюдалось, например, такое излучение, исходящее из центра нашей Галактики. Обратный процесс превращения электромагнитной энергии в электрон и позитрон называется рождением электрон-позитронной пары. Обычно гамма-квант с высокой энергией «конвертируется» в такую пару, пролетая вблизи атомного ядра (электрическое поле ядра необходимо, поскольку при превращении отдельно взятого фотона в электрон-позитронную пару были бы нарушены законы сохранения энергии и импульса). Еще один пример – распад первого возбужденного состояния ядра 16 О, изотопа кислорода.

Испусканием электронов сопровождается один из видов радиоактивности ядер. Это бета-распад – процесс, обусловленный слабым взаимодействием, при котором нейтрон в исходном ядре превращается в протон. Наименование распада происходит от названия «бета-лучи», исторически присвоенного одному из видов радиоактивных излучений, которое, как потом выяснилось, представляет собой быстрые электроны. Энергия электронов этого излучения не имеет фиксированного значения, поскольку (в соответствии с гипотезой, выдвинутой Э.Ферми) при бета-распаде вылетает еще одна частица – нейтрино, уносящая часть энергии, выделяющейся при ядерном превращении. Основной процесс таков:

Нейтрон ® протон + электрон + антинейтрино.

Испускаемый электрон не содержится в нейтроне; появление электрона и антинейтрино представляет собой «рождение пары» из энергии и электрического заряда, освобождающихся при ядерном превращении. Существует также бета-распад с испусканием позитронов, при котором находящийся в ядре протон превращается в нейтрон. Подобные превращения могут также происходить в результате поглощения электрона; соответствующий процесс называется К -захватом. Электроны и позитроны испускаются при бета-распаде и других частиц, например мюонов.

Роль в науке и технике.

Быстрые электроны широко применяются в современной науке и технике. Они используются для получения электромагнитного излучения, например рентгеновского, возникающего в результате взаимодействия быстрых электронов с веществом, и для генерации синхротронного излучения, возникающего при их движении в сильном магнитном поле. Ускоренные электроны применяют и непосредственно, например в электронном микроскопе, или при более высоких энергиях – для зондирования ядер. (В таких исследованиях была обнаружена кварковая структура ядерных частиц.) Электроны и позитроны сверхвысоких энергий используются в электрон-позитронных накопительных кольцах – установках, аналогичных ускорителям элементарных частиц. За счет их аннигиляции накопительные кольца позволяют с высокой эффективностью получать элементарные частицы с очень большой массой.

ЭЛЕКТРОН

(символ е - , е), стабильная элементарная частица с наименьшим отрицат. электрич. зарядом. Абс. величина заряда Э. e= 1,6021892 x 10 -19 Кл, или 4,803242 x 10 -10 ед. СГСЕ. Масса покоя Э. т е = 9,109534 x 10 -28 г. Спин Э. равен ( -постоянная Планка); система Э. подчиняется статистике Ферми - Дирака (см. Статистическая ). Магн. момент Э., связанный с его спином, равен -1,00116, где магнетон Бора.
Э.- первая элементарная частица, открытая в физике (Дж. Дж. Томсон, 1897); соответствующая ему античастица -позитрон е + - была открыта в 1932. Э. относится к классу лептонов, т. е. частиц, не проявляющих сильного взаимодействия, в то же время он участвует в электромагнитном, слабом и гравитационном взаимодействиях (см. Элементарные частицы). Э. могут возникать при распаде отрицательно заряженного мюона, -распаде, др. р-циях элементарных частиц. Примером р-ций с превращением Э. может служить аннигиляция Э. и позитрона с образованием двух -квантов:
В классич. электродинамике Э. рассматривается как частица, движение к-рой подчиняется ур-ниям Лоренца-Максвелла. Сформулировать понятие "размер Э." можно лишь условно, хотя величину r 0 и принято наз. классич. радиусом Э. Описание поведения Э. в потенц. полях, отвечающее эксперим. данным, удалось дать лишь на базе квантовой теории, согласно к-рой движение Э. подчиняется ур-нию Шрёдингера для нерелятивистских явлений и ур-нию Дирака для релятивистских (см. Квантовая механика). Вычисляемые в релятивистской квантовой теории характеристики Э., напр. магн. момент, с чрезвычайно высокой точностью совпадают с их эксперим. значениями.
Э. входят в состав всех атомов и молекул; они определяют многие оптич., электрич., магн. и хим. св-ва в-ва. Удаление Э. из нейтрального атома или молекулы на бесконечность приводит к появлению положит. иона; присоединение Э.- к отрицат. иону; миним. энергия, необходимая для удаления Э. либо выделяющаяся при присоединении Э.,- важная характеристика частицы, определяющая ее окислит.-восстановит. способность (см. Потенциал ионизации, Сродство к электрону).
В химии с Э. связывают образование разл. квантовых состояний молекул. Согласно адиабатическому приближению Э. молекулы движутся в фиксир. поле ядер, к-рое считается внешним по отношению к системе Э. Возникновение хим. связи между атомами обусловлено более сильным понижением электронной энергии системы при сближении атомов по сравнению с увеличением энергии отталкивания ядер. Анализ энергии системы Э. при разл. геом. конфигурациях ядер (см. Поверхность потенциальной энергии )позволяет судить о наиб. стабильных (равновесных) конфигурациях молекул, относит. стабильности разл. конформеров, колебат.-вращат. уровнях для каждого из электронных состояний и, что весьма важно,- о возможных путях и механизмах превращений хим. соед. (см. Реакционная способность). Распределение электронной плотности в в-вах - реагентах и изменение этого распределения при хим. взаимод. учитывается при изучении динамики элементарного акта р-ции.
Ценную информацию о строении молекул в разл. квантовых состояниях дает изучение углового распределения Э., выбиваемых из молекул при разл. физ. воздействиях, напр. при облучении квантами достаточно высокой энергии либо при столкновениях с Э. (см. Фотоэлектронная ). Наличие у Э. спина, приводящее к существованию электронных состояний молекул разл. мультиплетности, и связанного со спином магн. момента позволяет изучать расщепление мультиплетных состояний в магн. поле (см. Электронный парамагнитный резонанс). Со спином Э. связаны и различие св-в диа- и парамагнетиков в магн. поле, ферромагнетизм, антиферромагнетизм и т. д. Св-ва мн. материалов, в частности металлов и им подобных соед., определяются системой электронов, образующих своего рода электронный газ (см. Металлическая связь ).С коллективными состояниями системы электронов связано возникновение сверхпроводящего состояния в-ва (см. Сверхпроводники). Управляемые потоки Э. широко используют в технике, напр. в вакуумной электронике, а создаваемые в ускорителях потоки электронов высокой энергии - в исследованиях пов-сти твердых тел. В конденсир. среде Э. может быть захвачен молекулами среды и существовать в таком состоянии длительное время, напр. в р-рах щелочных металлов в аммиаке в отсутствие кислорода - в течение неск. месяцев (см. Сольватированный электрон).

Лит.: Андерсон Д., Открытие электрона, пер. с англ., М., 1968; Т оме он Г. П., "Успехи физ. наук", 1968, т. 94, в. 2, с. 361-70; Бейзер А., Основные представления современной физики, пер. с англ., М., 1973; Салем Л., Электроны в химических реакциях, пер. с англ., М., 1985; Пономарев Л. И., Под знаком кванта, 2 изд., М., 1989.

Н. Ф. Степанов.

Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Синонимы :

Смотреть что такое "ЭЛЕКТРОН" в других словарях:

    У этого термина существуют и другие значения, см. Электрон (значения). «Электрон 2» «Электрон» серия из четырёх советских искусственных спутников Земли, запущенных в 1964 году. Цель … Википедия

    Электрон - (Новосибирск,Россия) Категория отеля: 3 звездочный отель Адрес: 2 ой Краснодонский Переулок … Каталог отелей

    - (символ е, е), первая элем. ч ца, открытая в физике; матер. носитель наименьшей массы и наименьшего электрич. заряда в природе. Э. составная часть атомов; их число в нейтр. атоме равно ат. номеру, т. е. числу протонов в ядре. Заряд (е) и масса… … Физическая энциклопедия

    Электрон - (Москва,Россия) Категория отеля: 2 звездочный отель Адрес: Проспект Андропова 38 строение 2 … Каталог отелей

    Электрон - (e , e) (от греческого elektron янтарь; вещество, легко электризующееся при трении), стабильная элементарная частица с отрицательным электрическим зарядом e=1,6´10 19 Кл и массой 9´10 28 г. Относится к классу лептонов. Открыт английским физиком… … Иллюстрированный энциклопедический словарь

    - (е е), стабильная отрицательно заряженная элементарная частица со спином 1/2, массой ок. 9.10 28 г и магнитным моментом, равным магнетону Бора; относится к лептонам и участвует в электромагнитном, слабом и гравитационном взаимодействиях.… …

    - (обозначение е), устойчивая ЭЛЕМЕНТАРНАЯ ЧАСТИЦА с отрицательным зарядом и массой покоя 9,1310 31 кг (что составляет 1/1836 от массы ПРОТОНА). Электроны были обнаружены в 1879 г. английским физиком Джозефом Томсоном. Они движутся вокруг ЯДРА,… … Научно-технический энциклопедический словарь

    Сущ., кол во синонимов: 12 дельта электрон (1) лептон (7) минерал (5627) … Словарь синонимов

    Искусственный спутник Земли, созданный в СССР для изучения радиационных поясов и магнитного поля Земли. Запускались парами один по траектории, лежащей ниже, а другой выше радиационных поясов. В 1964 запущено 2 пары Электронов … Большой Энциклопедический словарь

    ЭЛЕКТРОН, элктрона, муж. (греч. elektron янтарь). 1. Частица с наименьшим отрицательным электрическим зарядом, образующая в соединении с протоном атом (физ.). Движение электронов создает электрический ток. 2. только ед. Легкий магниевый сплав,… … Толковый словарь Ушакова

Электрон - отрицательно заряженная элементарная частица, принадлежащая к классу лептонов (см. Элементарные частицы), носитель наименьшей известной сейчас массы и наименьшего электрического заряда в природе. Открыт в 1897 г. английским ученым Дж. Дж. Томсоном.

Электрон - составная часть атома, число электронов в нейтральном атоме равно атомному номеру, т. е. числу протонов в ядре.

Первые точные измерения электрического заряда электрона провел в 1909-1913 гг. американский фиаик Р. Милликен. Современное значение абсолютной величины элементарного заряда составляет единиц СГСЭ или примерно Кл. Считается, что этот заряд действительно «элементарен», т. е. он не может быть разделен на части, а заряды любых объектов являются его целыми кратными.

Вы, возможно, слышали о кварках с электрическими зарядами и но, по-видимому, они прочно заперты внутри адронов и в свободном состоянии не существуют. Вместе с постоянной Планка h и скоростью света с элементарный заряд образует безразмерную постоянную = 1/137. Постоянная тонкой структуры - один из важнейших параметров квантовой электродинамики, она определяет интенсивность электромагнитных взаимодействий (наиболее точное современное значение = 0,000015).

Масса электрона г (в энергетических единицах ). Если справедливы законы сохранения энергии и электрического заряда, то запрещены любые распады электрона, такие, как и т. п. Поэтому электрон стабилен; экспериментально получено, что время его жизни не менее лет.

В 1925 г. американские физики С. Гаудсмит и Дж. Уленбек для объяснения особенностей атомных спектров ввели внутренний момент количества движения электрона - спин (s). Спин электрона равен половине постоянной Планка , но физики обычно говорят просто, что спин электрона равен = 1/2. Со спином электрона связан его собственный магнитный момент . Величина эрг/Гс называется магнетоном Бора МБ (это принятая в атомной и ядерной физике единица измерения магнитного момента; здесь h - постоянная Планка, и m - абсолютная величина заряда и масса электрона, с - скорость света); числовой коэффициент - это -фактор электрона. Из квантовомеханического релятивистского уравнения Дирака (1928) следовало значение т. е. магнитный момент электрона должен был равняться в точности одному магнетону Бора.

Однако в 1947 г. в опытах было обнаружено, что магнитный момент примерно на 0,1% больше магнетона Бора. Объяснение этого факта было дано с учетом поляризации вакуума в квантовой электродинамике. Весьма трудоемкие вычисления дали теоретическое значение (0,000000000148), которое можно сравнить с современными (1981) экспериментальными данными: для электрона и позитрона (0,000000000050).

Величины вычислены и измерены с точностью до двенадцати знаков после запятой, причем точность экспериментальных работ выше точности теоретических расчетов. Это самые точные измерения в физике элементарных частиц.

Особенностями движения электронов в атомах, подчиняющегося уравнениям квантовой механики, определяются оптические, электрические, магнитные, химические и механические свойства веществ.

Электроны участвуют в электромагнитных, слабых и гравитационных взаимодействиях (см. Единство сил природы). Так, вследствие электромагнитного процесса происходит аннигиляция электрона и позитрона с образованием двух -квантов: . Электроны и позитроны высоких энергий могут участвовать и в других процессах электромагнитной аннигиляции с образованием адронов: адроны. Сейчас такие реакции усиленно изучаются на многочисленных ускорителях на встречных -пучках (см. Ускорители заряженных частиц).

Слабые взаимодействия электронов проявляются, например, в процессах с несохранением четности (см. Четность) в атомных спектрах или в реакциях между электронами и нейтрино .

Не имеется никаких данных о внутренней структуре электрона. Современные теории исходят из представлений о лептонах как о точечных частицах. В настоящее время это проверено экспериментально до расстояний см. Новые данные могут появиться лишь с повышением энергии столкновения частиц в будущих ускорителях.

Электрон
Electron

Электрон – самая лёгкая отрицательно заряженная частица, составная часть атома. Электрон в атоме связан с центральным положительно заряженным ядром электростатическим притяжением. Он имеет отрицательный заряд е = 1.602 . 10 -19 Кл, массу m е = 0.511 МэВ/с 2 = 9.11 . 10 -28 г и спин 1/2 (в единицах ћ), т.е. является фермионом. Магнитный момент электрона μ е >>μ В, где μ В = ећ/2m е с – магнетон Бора (использована Гауссова система единиц), что согласуется с моделью точечноподобной бесструктурной частицы (согласно опытным данным размер электрона < 10 -17 см). В пределах точности эксперимента электрон стабильная частица. Его время жизни
τ е > 4.6 . 10 26 лет.
Электрон принадлежит к классу лептонов, т.е. не участвует в сильном взаимодействии (участвует в остальных – электромагнитном, слабом и гравитационном). Описание электромагнитного взаимодействия электрона даётся квантовой электродинамикой – одним из разделов квантовой теории поля). У электрона имеется специальная характеристика, присущая лептонам, – электронное лептонное число + 1.
Античастицей электрона является позитрон е + , отличающийся от электрона только знаками электрического заряда, лептонного числа и магнитного момента.

Основные характеристики электрона

Характеристика

Численное значение

Спин J,
Масса m e c 2 , МэВ

0.51099892±0,00000004

Электрический заряд, Кулон

- (1,60217653±0,00000014)·10 -19

Магнитный момент, eћ/2m e c

1.0011596521859± 0.0000000000038

Время жизни , лет
Лептонное число L e
Лептонные числа L μ , L τ

Электрон – первая из открытых элементарных частиц – был открыт Дж. Дж. Томсоном в 1897 г. Изучая характеристики газового разряда, Томсон показал, что катодные лучи, образующиеся в разрядной трубке, состоят из отрицательно заряженных частиц вещества. Отклоняя катодные лучи в электрических и магнитных полях, он определил отношение заряда к массе этих частиц e/m = 6.7·10 17 ед. СГСЭ/г (современное значение 5.27·10 17 ед. СГСЭ/г). Он показал, что катодные лучи представляют собой поток более лёгких, чем атомы, частиц и не зависят от состава газа. Эти частицы были названы электронами. Открытие электрона и установление того факта, что все атомы содержат электроны, явилось важной информацией о внутреннем строении атома.