Единая энергетическая система россии. Характеристика еэс россии

Единая энергетическая система россии. Характеристика еэс россии

Единая энергетическая система России

Единая энергосистема - совокупность объединённых энергосистем (ОЭС), соединённых межсистемными связями, охватывающая значительную часть территории страны при общем режиме работы и имеющая диспетчерское управление

ЕЭС России охватывает практически всю обжитую территорию страны и является крупнейшим в мире централизованно управляемым энергообъединением. В настоящее время ЕЭС России включает в себя 69 энергосистем на территории 79 субъектов российской Федерации , работающих в составе шести работающих параллельно ОЭС - ОЭС Центра, Юга, Северо-Запада, Средней Волги, Урала и Сибири и ОЭС Востока, работающей изолированно от ЕЭС России. Кроме того, ЕЭС России осуществляет параллельную работу с ОЭС Украины, ОЭС Казахстана, ОЭС Белоруссии , энергосистемами Эстонии, Латвии, Литвы, Грузии и Азербайджана, а также с NORDEL (связь с Финляндией через вставку постоянного тока в Выборге). Энергосистемы Белоруссии, России, Эстонии, Латвии и Литвы образуют так называемое «Электрическое кольцо БРЭЛЛ», работа которого координируется в рамках подписанного в 2001 году Соглашения о параллельной работе энергосистем БРЭЛЛ.

  • снижение суммарного максимума нагрузки ЕЭС России на 5 ГВт ;
  • сокращение потребности в установленной мощности электростанций на 10-12 ГВт;
  • оптимизация распределения нагрузки между электростанциями в целях сокращения расхода топлива;
  • применение высокоэффективного крупноблочного генерирующего оборудования;
  • поддержание высокого уровня надёжности и живучести энергетических объединений.

Совместная работа электростанций в Единой энергосистеме обеспечивает возможность установки на электростанциях агрегатов наибольшей единичной мощности, которая может быть изготовлена промышленностью, и укрупнения электростанций. Увеличение единичной мощности агрегатов и установленной мощности электростанций имеет значительный экономический эффект.

История создания

Принципы централизации выработки электроэнергии и концентрации генерирующих мощностей на крупных районных электростанциях были заложены ещё при реализации плана ГОЭЛРО . Развитие электроэнергетики СССР в 1930-е годы характеризовалось началом формирования энергосистем. В 1926 году в Московской энергосистеме была создана первая в стране центральная диспетчерская служба (ЦДС, в настоящее время ЦДС носят названия Региональных диспетчерских управлений и имеют статус филиалов ОАО «СО ЕЭС»). К 1935 году в стране работало шесть энергосистем, в том числе Московская, Ленинградская, Донецкая и Днепровская. Первые энергосистемы были созданы на основе ЛЭП напряжения 110 кВ, за исключением Днепровской, в которой использовались линии напряжения 154 кВ, принятого для выдачи мощности Днепровской ГЭС .

В 1942 году для координации работы трех районных энергетических систем: Свердловской, Пермской и Челябинской было создано первое Объединённое диспетчерское управление - ОДУ Урала. В 1945 году было создано ОДУ Центра.

В начале 1950-х годов было начато строительство каскада гидроэлектростанций на Волге. В 1956 году объединение энергосистем Центра и Средней Волги линией электропередачи 400 кВ «Куйбышев - Москва», обеспечивавшей выдачу мощности Куйбышеской ГЭС , обозначило начало формирования Единой энергосистемы СССР. Последовавшее строительство ЛЭП 500 кВ от каскада Волжских ГЭС обеспечило возможность параллельной работы энергосистем Центра, Средней и Нижней Волги и Урала и завершило первый этап создания Единой энергетической системы.

В июле 1962 году было подписано соглашение о создании в Праге Центрального диспетчерского управления (ЦДУ) энергосистем Болгарии, Венгрии, ГДР, Польши, СССР, Румынии и Чехословакии. Это соглашение привело к созданию крупнейшей на планете энергосистемы «Мир» (установленная мощность электростанций более 400 ГВт).

В 1967 году на базе ОДУ Центра было создано Центральное диспетчерское управление (ЦДУ) ЕЭС СССР, принявшее на себя также функции диспетчерского управления параллельной работой энергосистем ОЭС Центра.

В 1970 году к ЕЭС была присоединена ОЭС Закавказья, а в 1972 году - ОЭС Казахстана и отдельные районы Западной Сибири.

В 1978 году ОЭС Сибири была присоединена к ЕЭС СССР.

К 1990 году в состав ЕЭС СССР входили 9 из 11 энергообъединений страны, охватывая 2/3 территории СССР, на которых проживало более 90 % населения. В ноябре 1993 г. из-за большого дефицита мощности на Украине был осуществлён вынужденный переход на раздельную работу ЕЭС России и ОЭС Украины, что привело к раздельной работе ЕЭС России с остальными энергосистемами, входящими в состав энергосистемы «Мир». В дальнейшем параллельная работа энергосистем, входящих в состав «Мира», с центральным диспетчерским управлением в Праге не возобновлялась. После распада СССР электрические связи между некоторыми энергообъединениями в составе ЕЭС России стали проходить по территории независимых государств и электроснабжение части регионов оказалось зависимым от этих государств (связи 500-1150 кВ между ОЭС Урала и Сибири, проходящие по территории Казахстана, связи ОЭС Юга и Центра, частично проходящие по территории Украины, связи ОЭС Северо-Запада с Калининградской энергосистемой, проходящие по территории стран Балтии).

В 1995 году ОДУ Центра выведено из состава ЦДУ ЕЭС России в качестве Дирекции оперативно-диспетчерского управления объединенной энергетической системы Центра «Центрэнерго» (филиал РАО «ЕЭС России»).

Административно-хозяйственное управление ЕЭС

До 1 июля 2008 года высшим уровнем в административно-хозяйственной структуре управления электроэнергетической отраслью являлось ОАО «РАО ЕЭС России ».

Диспетчерско-технологическое управление работой ЕЭС России осуществляет ОАО «СО ЕЭС ».

Эксплуатирующей организацией АЭС России является ОАО «Концерн Росэнергоатом» .

Реформирование электроэнергетики подразумевало создание в России оптового и розничных рынков электрической энергии. Деятельность по обеспечению функционирования коммерческой инфраструктуры оптового рынка, эффективной взаимосвязи оптового и розничных рынков, формированию благоприятных условий для привлечения инвестиций в электроэнергетику, организации на основе саморегулирования эффективной системы оптовой и розничной торговли электрической энергией и мощностью осуществляет некоммерческое партнёрство «Совет рынка ». Деятельность по организации торговли на оптовом рынке, связанная с заключением и организацией исполнения сделок по обращению электрической энергии, мощности и иных объектов торговли, обращение которых допускается на оптовом рынке, осуществляет коммерческий оператор оптового рынка - ОАО «Администратор торговой системы оптового рынка электроэнергии » (ОАО «АТС»).

Особенности ЕЭС

ЕЭС России располагается на территории, охватывающей 8 часовых поясов. Необходимостью электроснабжения столь протяжённой территории обусловлено широкое применение дальних электропередач высокого и сверхвысокого напряжения. Системообразующая электрическая сеть ЕЭС (ЕНЭС) состоит из линий электропередачи напряжения 220, 330, 500 и 750 кВ. В электрических сетях большинства энергосистем России используется шкала напряжений 110-220 - 500-1150 кВ. В ОЭС Северо-Запада и частично в ОЭС Центра используется шкала напряжений 110-330 - 750 кВ. Наличие сетей напряжения 330 и 750 кВ в ОЭС Центра связано с тем, что сети указанных классов напряжения используются для выдачи мощности Калининской, Смоленской и Курской АЭС, расположенных на границе использования двух шкал напряжений. В ОЭС Северного Кавказа определённое распространение имеют сети напряжения 330 кВ.

Структура генерирующих мощностей

ОЭС, входящие в состав ЕЭС России, имеют различную структуру генерирующих мощностей, значительная часть энергосистем не сбалансирована по мощности и электроэнергии. Основу российской электроэнергетики составляют около 600 электростанций суммарной мощностью 210 ГВт, работающих в составе ЕЭС России. Две трети генерирующих мощностей приходится на тепловые электростанции . Около 55 % мощностей ТЭС составляют теплоэлектроцентрали (ТЭЦ), а 45 % - конденсационные электростанции (КЭС). Мощность гидравлических (ГЭС), в том числе гидроаккумулирующих (ГАЭС) электростанций составляет 21 % установленной мощности электростанций России. Мощность атомных электростанций составляет 11 % установленной мощности электростанций страны. Для ЕЭС России характерна высокая степень концентрации мощностей на электростанциях. На тепловых электростанциях эксплуатируются серийные энергоблоки единичной мощностью 500 и 800 МВт и один блок мощностью 1200 МВт на Костромской ГРЭС . Единичная мощность энергоблоков действующих АЭС достигает 1000 МВт.

Технические проблемы функционирования ЕЭС

Одной из серьёзных проблем функционирования ЕЭС является слабость межсистемных, а иногда и системообразующих связей в энергосистеме, что приводит к «запиранию» мощностей электрических станций . Слабость межсистемных связей в ЕЭС обусловлена ее территориальной распределённостью. Ограничения в использовании связей между различными ОЭС и большинства наиболее важных связей внутри ОЭС определяются в основном условиями статической устойчивости; для ЛЭП, обеспечивающих выдачу мощности крупных электростанций, и ряда транзитных связей определяющими могут быть условия динамической устойчивости.

Проводившиеся исследования выявили, что стабильность частоты в ЕЭС России ниже, чем в UCTE . Особенно большие отклонения частоты происходят весной и во второй половине ночи, что свидетельствует об отсутствии гибких средств регулирования частоты .

Перспективы развития ЕЭС

Развитие ЕЭС в обозримой перспективе описывается в Генеральной схеме размещения объектов электроэнергетики до 2020 года.

В настоящее время Системный оператор завершил работу над технико-экономическим обоснованием (ТЭО) объединения ЕЭС/ОЭС с UCTE. Такое объединение означало бы создание самого большого в мире энергетического объединения, расположенного в 12 часовых поясах, суммарной установленной мощностью более 860 ГВт . 2 апреля 2009 года в Москве состоялась Международная отчётная конференция «Перспективы объединения энергосистем Восток-Запад (Результаты ТЭО синхронного объединения ЕЭС/ОЭС с UCTE)» . ТЭО показало, что «синхронное объединение энергосистем UCTE и ЕЭС/ОЭС возможно при условии проведения ряда технических, эксплуатационных и организационных мероприятий и создания необходимых правовых рамок, определённых исследованием. Поскольку выполнение этих условий, вероятно, потребует длительного времени, синхронное объединение должно рассматриваться как долгосрочная перспектива. Для построения совместной, крупнейшей в мире рыночной платформы для торговли электроэнергией между синхронными зонами UCTE и ЕЭС/ОЭС также может быть рассмотрено создание несинхронных связей, что, однако, требует проведения отдельных исследований заинтересованными сторонами» .

Примечания

  1. Федеральный закон Российской Федерации от 26 марта 2003 г. N 35-ФЗ «Об электроэнергетике»
  2. ГОСТ 21027-75 «Системы энергетические. Термины и определения»
  3. Соотношение территорий федеральных округов, регионов и энергосистем
  4. Менеджмент и маркетинг в электроэнергетике: учебное пособие для студентов ВУЗов /А. Ф. Дьяков, В. В. Жуков, Б. К. Максимов, В. В. Молодюк; под ред. А. Ф. Дьякова. - 3-е изд. - М.: Издательский дом МЭИ, 2007
  5. Автоматизация диспетчерского управления в электроэнергетике/В. А. Баринов, А. З. Гамм, Ю. Н. Кучеров, В. Г. Орнов, Ю. Н. Руденко, В. А. Семёнов, В. А. Тимофеев, Ю. А. Тихонов, Е. В. Цветков; под общей ред. Ю. Н. Руденко и В. А. Семёнова. - М.: Издательство МЭИ, 2000
  6. Основы современной энергетики: учебник для вузов: в 2 т. / под общей редакцией чл.-корр. РАН Е. В. Аметистова . - 4-е изд., перераб. и доп. - М. : Издательский дом МЭИ, 2008. Том 2. Современная электроэнергетика / под ред. профессоров А. П. Бурмана и В. А. Строева. - 632 с., ил.

Единая национальная (общероссийская) электрическая сеть. Единая национальная (общероссийская) электрическая сеть - комплекс электрических сетей и иных объектов электросетевого хозяйства, обеспечивающих устойчивое снабжение электрической энергией потребителей, функционирование оптового рынка, а также параллельную работу российской электроэнергетической системы и электроэнергетических систем иностранных государств.

В соответствии с критериями, утвержденными Постановлением Правительства РФ от 26.01.2006 №41 к объектам единой национальной (общероссийской) электрической сети относятся:

1. Линии электропередачи (воздушные и кабельные), проектный номинальный класс напряжения которых составляет 330 киловольт и выше.

2. Линии электропередачи (воздушные и кабельные), проектный номинальный класс напряжения которых составляет 220 киловольт:

обеспечивающие выдачу в сеть энергетической мощности электрических станций, общая установленная мощность каждой из которых составляет не менее 200 мегаватт;

обеспечивающие соединение и параллельную работу энергетических систем различных субъектов Российской Федерации;

обеспечивающие выдачу энергетической мощности в узлы электрической нагрузки с присоединенной трансформаторной мощностью не менее 125 мегавольт-ампер;

непосредственно обеспечивающие соединение указанных линий электропередачи, включая магистральные линии электропередачи с подстанциями, внесенными в уставный фонд Российского открытого акционерного общества энергетики и электрификации "ЕЭС России".

3. Линии электропередачи, пересекающие государственную границу Российской Федерации.

4. Линии электропередачи (воздушные и кабельные), проектный номинальный класс напряжения которых составляет 110 (150) киловольт и вывод из работы которых приводит к технологическим ограничениям перетока электрической энергии (мощности) по сетям более высокого класса напряжения.

5. Трансформаторные и иные подстанции, проектный номинальный класс напряжения которых составляет 220 киловольт и выше, соединенные с линиями электропередачи, указанными в пунктах 1 - 3 указанного Постановления, а также технологическое оборудование, расположенное на этих подстанциях, за исключением распределительных устройств электрических станций, входящих в имущественный комплекс генерирующих энергообъектов.

6. Оборудование распределительных устройств напряжением 110 (150) киловольт и связанное с ним вспомогательное оборудование на трансформаторных и иных подстанциях, проектный номинальный класс напряжения которых составляет 110 (150) киловольт, обеспечивающие транзитные перетоки электрической энергии по линиям электропередачи напряжением 110 (150) киловольт, указанным в пункте 4 указанного Постановления.


7. Комплекс оборудования и производственно-технологических объектов, предназначенных для технического обслуживания и эксплуатации указанных объектов электросетевого хозяйства.

8. Системы и средства управления указанными объектами электросетевого хозяйства.

Единая энергетическая система России (ЕЭС России). Единая энергетическая система России (ЕЭС России) - совокупность производственных и иных имущественных объектов электроэнергетики, связанных единым процессом производства (в том числе производства в режиме комбинированной выработки электрической и тепловой энергии) и передачи электрической энергии в условиях централизованного оперативно-диспетчерского управления в электроэнергетике.

ГОСТ 21027-75 дает следующее определение Единой энергосистемы:

Единая энергосистема - совокупность объединённых энергосистем (ОЭС), соединённых межсистемными связями, охватывающая значительную часть территории страны при общем режиме работы и имеющая диспетчерское управление

ЕЭС России охватывает практически всю обжитую территорию страны и является крупнейшим в мире централизованно управляемым энергообъединением. В настоящее время ЕЭС России включает в себя 69 энергосистем на территории 79 субъектов российской Федерации, работающих в составе шести работающих параллельно ОЭС - ОЭС Центра, Юга, Северо-Запада, Средней Волги, Урала и Сибири и ОЭС Востока, работающей изолированно от ЕЭС России. Кроме того, ЕЭС России осуществляет параллельную работу с ОЭС Украины, ОЭС Казахстана, ОЭС Белоруссии, энергосистемами Эстонии, Латвии, Литвы, Грузии и Азербайджана, а также с NORDEL (связь с Финляндией через вставку постоянного тока в Выборге). Энергосистемы Белоруссии, России, Эстонии, Латвии и Литвы образуют так называемое «Электрическое кольцо БРЭЛЛ», работа которого координируется в рамках подписанного в 2001 году Соглашения о параллельной работе энергосистем БРЭЛЛ.

Единая энергосистема. Совокупность объединенных энергосистем, соединенных межсистемными связями, охватывающая значительную часть территории страны при общем режиме работы и имеющая диспетчерское управление [ГОСТ 21027-75]

В последнее время Российское акционерное общество "Единая энергетическая система России" (РАО "ЕЭС России") особенно часто упоминается в средствах массовой информации в связи с разного рода неплатежами пользователей, отключениями упорных неплательщиков и иными невеселыми событиями. В результате создается впечатление о ЕЭС, как о большой конторе с бухгалтерскими книгами и рубильниками. В то же время российская Единая энергетическая система - это прежде всего огромных масштабов творение науки, техники и технологии, это объявший всю страну, от Калининграда до Владивостока, индустриальный гигант, снабжающий наши дома, предприятия и заводы электричеством и теплом. Что представляет собой Единая энергетическая система России как объект техники? Как она работает? На вопросы отвечает руководитель Департамента научно-технической политики и развития РАО "ЕЭС России", доктор технических наук Ю. Н. КУЧЕРОВ.

Руководитель Департамента научно-технической политики и развития РАО "ЕЭС России" Юрий Николаевич Кучеров.

- Позвольте попросить вас, Юрий Николаевич, для начала привести несколько главных цифр, которые помогли бы представить себе масштабы российской энергетики...

Начну с того, что сегодня на карте России нет "электрических белых пятен", электричество доставляется во все районы огромной страны, всем ее жителям. Основная масса потребителей получает его от мощных электростанций, объединившихся в огромные сети, и лишь 1,5% пользователей, например в далеких таежных поселках или на зимовках, получают электричество от небольших местных электрогенераторов. Примерно 40% всей вырабатываемой в стране электроэнергии потребляет промышленность, 7% - транспорт и связь, 12% идет на бытовые нужды населения. В структуре российской промышленной продукции на долю электроэнергетики приходится примерно 9%; если считать в рублях, получится более 300 млрд рублей, или более 10 млрд долларов. Это довольно много. Но, думаю, и без дополнительных цифр ясно, что вся остальная промышленность, да и вообще все народное хозяйство, может функционировать только при крупномасштабном производстве и потреблении электричества. В любой высокоразвитой индустриальной стране без электрического изобилия вообще невозможно существовать, не говоря уже о том, чтобы получать все те блага, которые оно для нас создает. Объем потребления электроэнергии во всем мире неуклонно растет, и это характеризует рост уровня благосостояния человека.

Повсеместное проникновение электричества в нашу жизнь произошло невероятно быстро, первые электрические лампочки появились всего 120 лет назад...

Совсем, казалось бы, недавно, чуть больше ста лет назад, главная московская электростанция имела всего 800 абонентов, а остальные жилища в столице, как и во всей стране, освещались свечами и керосиновыми лампами. Примерно в то же время в Москве появился первый трамвайный вагон. Об этом полезно вспомнить сегодня, взяв для сравнения, к примеру, нынешнюю схему московского метро или расписание пригородных электричек. Прогресс нашей электроэнергетики огромен, и это при том, что дважды она не просто останавливалась в своем развитии, а резко откатывалась назад - во времена Гражданской войны (вспомните уэллсовское "Россия во мгле") и в результате чудовищных разрушений во время Великой Отечественной. Принятый еще в 1920 году План ГОЭЛРО сделал создание мощной электроэнергетики национальной задачей. К разработке этого плана были привлечены лучшие научные и инженерные силы, в трудные для страны годы он стал абсолютным приоритетом при распределении финансовых ресурсов, в том числе валютных, закупке лучших образцов зарубежного энергетического оборудования, разворачивании отечественного энергомашиностроения. И вот результат: уже к 1932 году, то есть всего через 12 лет, производство электроэнергии в России выросло в 53 раза! В прошлом году электроэнергии произведено еще в 65 раз больше - 890 млрд кВт.ч, и почти столько же получили российские потребители. Добавлю несколько, как вы их назвали, главных цифр: в стране работает более 600 электростанций с общей установленной мощностью 215 млн кВт, в том числе 56 крупных - по 1000 МВт и более. Почти 80% всех этих станций входит в систему РАО "ЕЭС России".

Первая на Енисее Красноярская ГЭС с бетонной плотиной длиной 1100 м и высотой 120 м начала работать на полную мощность (6000 МВт) в 1971 году. Ее 12 гидроагрегатов вырабатывают в год в среднем 20,4 млрд кВт. ч электроэнергии.

Схема справа: Структура производства электроэнергии на электростанциях России в 2000 году:
ТЭС - 67%; 582,4 ГВт. ч;
ГЭС - 19%; 164,4 ГВт. ч;
АЭС - 15%; 128,9 ГВт. ч.

- До сих пор мне казалось, что Единая система объединяет все электростанции страны, по крайней мере крупные...

Это действительно так. Но есть довольно мощные станции, которые в систему входят, а принадлежат большим промышленным предприятиям, таким, скажем, как Волжский автозавод или Магнитогорский металлургический комбинат. Кроме того, около 10% общей установленной мощности приходится на долю атомных электростанций, они, как производители электроэнергии, тоже входят в Единую систему, но в силу своих специфических особенностей находятся в ведении Министерства по атомной энергии, которое занимается атомной энергетикой. Примерно 70% всей мощности обеспечивают тепловые электростанции, первичную энергию им дает органическое топливо - газ, уголь и нефтепродукты. Остальные 20% установленной мощности приходятся на гидроэлектростанции, их генераторы вращает падающая вода рек, поднятая плотинами на многометровую высоту.

Вы сказали, что производство и потребление электроэнергии в стране примерно одинаково. Почему "примерно"? Разве потребляется не столько же, сколько производится?

Во-первых, какую-то часть электричества, пока небольшую - 18 млрд кВт.ч (около 2% от электропотребления), мы экспортируем, продаем в ближнее и дальнее зарубежье. Во-вторых, 3-4% уходит на неизбежные потери при производстве энергии и еще 13% - на потери при транспортировке. Хотелось бы пояснить слово "неизбежные". Энергия теряется не потому, что кто-то что-то проморгал или украл, многие процессы, такие, например, как движение тока в проводах или вращение осей в подшипниках, по своей физической природе сопровождаются потерями (нагрев, трение, работа вспомогательного оборудования и др.). У энергетиков с давних времен существует самый настоящий культ борьбы с потерями, на это брошены мощные силы ученых, конструкторов, технологов. победой считается снижение потерь даже на малые доли процента.

А как выглядит наша электроэнергетика в сравнении с другими странами? И по каким показателям обычно проводится такое сравнение?

Важнейшие показатели - годовое производство и потребление электроэнергии на душу населения. В этой части мы в целом занимаем неплохое место: на каждого россиянина приходится 6000 кВт.ч. В других странах СНГ удельное потребление электроэнергии, к сожалению, заметно ниже.

Получается, что каждый россиянин потребляет 500 кВт.ч электричества в месяц... Согласно показаниям домашнего счетчика, я потребляю раз в пять меньше.

Счетчик показывает, сколько электроэнергии истратили вы лично, а есть еще промышленность, у нее аппетиты совсем иные. Один прокатный стан, например, за смену потребляет электроэнергии больше, чем вся ваша квартира за 100 лет. В расчете на душу населения Северная Америка потребляет 10 тыс. кВт.ч электричества в год, Южная - 1,7, Океания - 9,3, Европа - 5,4, Азия - 0,97, Африка - 0,5. В среднем в мире потребление электроэнергии составляет 2000 кВт.ч на человека в год. Так что в этом списке наши 6000 кВт.ч выглядят вроде бы неплохо.

- А почему с оговоркой, почему "вроде бы"?

Потому, что кроме удельного энергопотребления есть и другие важные показатели человеческого достатка, в том числе энергетического. Основа одного из таких показателей - внутренний валовой продукт, сокращенно ВВП, определяющий стоимость всего, что произведено в стране за год, и обычно тоже в расчете на одного ее жителя. Можно сопоставить ВВП с потребляемой электроэнергией и получить электроемкость ВВП (сколько киловатт-часов затрачивается на производство одной единицы ВВП в долларовом эквиваленте). Электроемкость позволяет сделать вывод о том, насколько эффективно используется электроэнергия. Одно дело, если на изготовление мясорубки или банки мороженого уходит 10 кВт.ч электричества, и совсем другое, если 1 кВт.ч. Так вот, пока на каждый доллар, вложенный в производство продукции, в нашей стране тратится в 3 раза больше электроэнергии, чем в США, и примерно в 5 раз больше, чем в Германии, во Франции или в Японии. Это чрезвычайно важные цифры, они могут говорить о многом: о техническом состоянии промышленности, об организации дела, уровне технологий. После 1990 года удельные энергозатраты в стране заметно возросли (почти на 30%), а сейчас потихоньку снижаются. При этом явно растут масштабы производства, увеличивается суммарный ВВП, и это видно по спросу на электроэнергию: в 1990 году ее выработка достигла 1074 млрд кВт.ч, за последующие восемь лет она снизилась до 809 млрд кВт.ч и вот теперь вновь поднялась до 890 млрд кВт.ч.

Такой подъем вполне объясним: страна пережила, видимо, худшие времена и теперь развивается уже на иной, на рыночной основе. Специалисты считают, что процесс этот будет набирать темпы, так что вскоре промышленности понадобится значительно больше электричества. Вы готовы к этому?

Можно ответить: "Да, готовы", но с некоторыми важными комментариями. Во-первых, энергетика способна остановить любой экономический прогресс, если будет ждать, когда у пользователей появятся новые потребности. Энергетика должна предвидеть растущий спрос, готовиться к нему и развиваться опережающими темпами. В свое время именно эта стратегия позволила за несколько десятилетий вывести нашу страну из разрухи в число ведущих индустриальных держав мира. Что такое опережающие темпы, станет понятнее, если напомнить, что строительство крупной электростанции сегодня обходится в несколько миллиардов долларов и строится станция 5-8 лет, а с учетом согласования участка, проектирования и подготовительных работ - все 10-15.

С пуском Колымской ГЭС мощностью 720 МВт с годовым производством электроэнергии 3,3 млрд кВт. ч значительно повысилась надежность и экономичность энергоснабжения Магаданской области.

Во-вторых, и это исключительно важно, мы готовимся к дальнейшему росту производства, а значит, и к повышению спроса на электроэнергию. Но, скажу прямо, вряд ли удастся удовлетворить спрос, если будет продолжаться разбазаривание энергии, если не повысится эффективность ее использования, прежде всего в промышленности. Напомню: пока на каждый доллар, затраченный на производство своей продукции, мы расходуем в 3-5 раз больше электроэнергии, чем передовые промышленные страны.

Сейчас в РАО "ЕЭС России" разработаны основные положения программы устойчивого развития российской энергетики вплоть до 2020 года. К этому времени годовое производство электроэнергии практически удвоится и подойдет к уровню 1620 млрд кВт.ч, а установленная мощность электростанций увеличится примерно на 50% и достигнет 320 млн кВт (320 тыс. МВт). За этими скучными вроде бы цифрами стоит огромный объем работ, в том числе удвоение мощности АЭС, строительство тепловых угольных электростанций (что существенно увеличит потребление угля), а также крупных гидроэлектростанций в Сибири, на Дальнем Востоке и на Северном Кавказе. В частности, изучается возможность строительства Туруханской ГЭС мощностью 12 млн кВт (почти вдвое больше, чем дает нынешний рекордсмен - Саяно-Шушенская ГЭС), которая войдет в тройку крупнейших гидростанций мира.

Изменится и сама структура производства электричества: удельный вес атомных станций увеличится с 15 до 20%, а гидроэнергетики - снизится с 20 до 15%. При этом суммарная доля электростанций, не использующих органическое топливо, не должна снизиться. Заметно улучшатся характеристики ряда тепловых электростанций, появятся новые технологии, в их числе повышение параметров пара до суперсверхкритических, переход от классических паровых турбин к парогазовому циклу, использование мощных газовых турбин. В результате уже в обозримом будущем средний коэффициент полезного действия тепловых электростанций может подняться с "классических" 34% до 45% и даже выше, а за этим стоит огромная экономия топлива: на сэкономленном за год в масштабах страны топливе можно было бы 8-9 лет "кормить" электричеством такой город, как Москва.

Пока речь шла о позитивных слагаемых будущего нашей энергетики, но, как говорится, из песни слова не выкинешь, придется говорить и о неприятных моментах. Главное - неотвратимое старение и износ ныне действующего оборудования. На гидроэлектростанциях половину мощности получают от машин, которые уже выработали свой ресурс, а на тепловых электростанциях к 2020 году в таком положении окажется 70% оборудования.

- Не страшно работать с машинами, которые уже свое отслужили?

Проблема не в том, страшно или не страшно. Прежде всего специалисты думают о том, чтобы машины эти еще поработали и, главное, как своевременно определить, что они приблизились к опасному порогу. Оборудование тщательно обследуют и в случае необходимости переводят на облегченный режим работы, смирившись с некоторой потерей эффективности и экономичности. Специалисты скрупулезно исследуют физические механизмы старения, ищут способы детальной диагностики и непрерывного контроля агрегатов.

И, наконец, главное средство - замена или радикальный ремонт оборудования. Наряду с программой ввода новых мощностей и освоения новых технологий в РАО "ЕЭС России" существует не менее сложный и дорогой план массовой реконструкции или восстановления действующей техники. О масштабах этой работы можно судить хотя бы по тому, что за год в среднем будут реконструированы паровые котлы общей производительностью 1000 тонн пара в час, а также турбогенераторы суммарной электрической мощностью 1500 МВт. В связи с этим нелишне напомнить, что генератор средней мощности, который нужно разобрать для замены или восстановительного ремонта основных узлов, имеет длину 6-8 метров, диаметр 2-3 метра, и весит он 20-30 тонн. Рабочее колесо гидротурбины - это деталь диаметром 10-12 метров и весом 30-50 тонн. Короче говоря, ремонтники имеют дело с весьма масштабными машинами и системами.

Кстати о масштабах. Перед нашей встречей я побывал на одной из московских электростанций и был просто потрясен размерами этого, как говорят, среднего по мощности предприятия. Огромный машинный зал, конца не видно, по всей его длине два ряда крупных спаренных агрегатов - паровая турбина-электрогенератор. Где-то очень высоко, под самой крышей, мостовые краны. А спускаешься на нижний уровень и оказываешься в окружении бессчетного числа трубопроводов и каких-то гудящих вертикальных цилиндров большого диаметра - это паровые котлы; слышно, как в многоярусной системе больших форсунок сгорает газ, у каждой паровой турбины свой котельный комплекс. А еще есть непростое оборудование водоподготовки, конденсации отработавшего пара, извлечения твердых частиц из дыма, принудительного водяного охлаждения генераторов, повышения их выходного напряжения мощными трансформаторами и т. д. К сожалению, фотографии, которые до этого приходилось видеть, не дают представления об истинных размерах и сложности современной электростанции, этого гигантского завода, выпускающего электричество.

Вы были на газовой электростанции, угольная наверняка произвела бы еще более сильное впечатление своим огромным хозяйством подготовки топлива. Это механизированная разгрузка железнодорожных составов, например опрокидыватели вагонов, система транспортировки и мельницы для измельчения угля, который затем эффективно сжигается в топках котлов в виде воздушно-пылевой смеси. Средняя электростанция потребляет за сутки 100-200 вагонов угля. Сегодня в топливном балансе электроэнергетики первое место (54%) занимает газ - с учетом того, что в России находится 38% его мировых запасов. На долю угля приходится 31%, в 2020 году будет 37%, а мощность угольных тепловых электростанций возрастет еще заметнее.

- Почему такое внимание углю? Ведь газ и нефтепродукты - топливо более удобное, более чистое...

Во-первых, мировые запасы газа и нефти весьма ограничены; по серьезным прогнозам, их хватит на два-три десятилетия, и цены на них неуклонно повышаются. А уголь будет кормить мир энергией еще лет восемьсот. Я не оговорился - не 80, а именно 800. Во-вторых, большая наука не оставляет уголь без внимания, и уже есть несколько технологических решений, резко повышающих его ценность. Разрабатывается новая стратегия комплексного использования угля, в частности за счет газификации и получения жидких топлив. Расширяется сфера применения угля в качестве сырья для химической промышленности, и даже шлакам, с которыми у нас сегодня немало хлопот, находится полезное применение в строительной индустрии. Кроме того, начинают применяться такие интересные технологии, как сжигание и газификация угля в шлаковом расплаве, сжигание угля в кипящем слое (КС) и в циркулирующем кипящем слое (ЦКС), они заметно повышают параметры эффективности использования углей, в том числе самых низкосортных, и обеспечивают минимальные выбросы загрязняющих веществ.

- В чем сущность этих технологий? Что конкретно они дают?

Об этом нужно рассказывать отдельно, но две последние технологии, предельно упростив картину, попробую все же представить. В топке котла создают восходящий воздушный поток, и уголь, сгорая, как бы зависает в воздухе (технология КС) или, зависая, вовлекается в круговое движение (технология ЦКС). В результате уголь сгорает активнее, в том числе и низкосортный, низкокалорийный. Появляется возможность уменьшить теплообменные элементы самого котла, а также эффективно удалять из кипящего слоя вредные выбросы. В технологии ЦКС уголь сгорает при сравнительно низкой температуре, без шлакообразования.

- И в какой стадии эти новые технологии? Это идеи? Лабораторные эксперименты? Опытные установки?

В Европе уже имеется 275 котлов, работающих по технологии ЦКС, в Соединенных Штатах - 155 котлов, в Японии - 28, в Китае - 25, а в странах Азии в целом - 126. В среднем тепловая мощность котлов нового типа - до 200 МВт, этого достаточно для электрогенератора мощностью примерно 70 МВт. Самый крупный котел, работающий с использованием технологии ЦКС, был построен во Франции лет восемь назад для энергоблока с электрической мощностью 250 МВт, котел работает на углях очень низкого качества. И у нас внедрение технологий КС и ЦКС - одно из важных слагаемых технической политики.

Раз уж речь зашла о технической политике, поясните, пожалуйста, упомянутое чуть раньше: что стоит за словами парогазовый цикл и использование мощных газовых турбин?

С газовыми турбинами все просто - в отличие от паровых, их приводит в движение не пар, а газы высокого давления, представляющие собой продукты сгорания топлива. В самолетных двигателях, например, это продукты сгорания керосина, сжигаемого на входе турбины. Для энергетики газовая турбина привлекательна тем, что у нее, во-первых, высокий кпд, вплоть до 36% и, во-вторых, ее можно быстро запустить или остановить, в зависимости от изменения электрической нагрузки. Долгое время турбин достаточно высокой мощности просто не было, но сейчас на электростанциях, в том числе и у нас, появляются газовые турбины мощностью 110-150 МВт - это уже вполне ощутимая величина для большой энергетики. К созданию мощных газовых турбин подключаются лидеры российской авиационной промышленности - заводы "Пермские моторы" и "Рыбинские моторы", думаю, энергетики вскоре это почувствуют.

На территории России уже работают около десяти газотурбинных установок. Одна из них - ГТУ-4П действует на блочно-контейнерной теплоэлектростанции ГТЭС-4 "Урал" в г. Сысерти Свердловской области.

Мощные газовые турбины принесли в энергетику высокий кпд, быстрое включение при большой нагрузке и, главное, позволили значительно улучшить параметры ТЭС за счет парогазового цикла. На фото справа: газотурбинная энергетическая установка ГТЭ-160, предназначенная для привода электрического генератора с частотой вращения 3000 об/мин, может работать как в автономном режиме, вырабатывая электрический ток, так и в составе парогазовой установки, дающей и электричество и тепло. На сегодняшний день в производственном объединении "Ленинградский металлический завод" собрано 15 таких установок, в том числе 5 - для России. Половину деталей и узлов для них изготавливают в Санкт-Петербурге, половину получают с фирмы "Сименс" из Германии.

На рисунке представлены атомные электростанции на территории России при реализации стратегии их развития до 2020 года. Сегодня в России действуют 29 ядерных энергоблоков общей установленной мощностью 21,2 ГВт. В их числе 13 энергоблоков с реакторами типа ВВЭР (водо-водяные), 11 энергоблоков с реакторами типа РБМК (канальные большой мощности), четыре энергоблока типа ЭГП с канальными водографитовыми реакторами (на Билибинской АТЭЦ) и один энергоблок на быстрых нейтронах БН-600. Кроме того, достраиваются еще пять энергоблоков: четыре с реакторами ВВЭР-1000 (на Ростовской, Калининской и Балаковской АЭС) и один с реактором РБМК-1000 (на Курской АЭС).

Мощные газовые турбины - основной элемент парогазовых систем, применение которых уже в недалеком будущем позволит существенно - на 15-20%! - снизить потребление топлива при производстве электроэнергии на тепловых электростанциях. Если не вдаваться в детали, то парогазовую систему можно описать так: в нее входят мощная газовая турбина с электрогенератором и паровая турбина, тоже с электрогенератором и, естественно, со своим паровым котлом. Отработавшие в газовой турбине продукты сгорания, сохранившие высокую температуру, подаются в топку парового котла и там отдают всю энергию, какая у них осталась. В итоге кпд системы повышается до 55%, в то время как у паросиловой установки он, напомню, составляет 34%. Переход к парогазовым установкам едва ли не главное направление технического прогресса в энергетике. В соответствии с энергетической стратегией России в период с 2001 по 2020 годы намечается ввести около 80 млн кВт генерирующих мощностей на основе новых технологий, использующих парогазовые и газотурбинные установки (ПГУ и ГТУ).

- И сколько таких систем появится на наших электростанциях, скажем, в ближайшие десять лет?

За этот срок намечается ввести более 16 млн кВт, вырабатываемых ПГУ и ГТУ. В целом, когда речь идет о технической модернизации электростанций, так же, кстати, как и о капитальном ремонте отслужившего свой срок оборудования, полезно вспомнить, что на тепловой электростанции работает до двух десятков агрегатов "паровой котел - турбина - электрогенератор". Это могут быть самые разные агрегаты, в частности, с установлен ной мощностью электрогенератора от 50 тыс. кВт (их хватит, чтобы "накормить" электриче ством небольшой город) до 1,2 млн кВт. Всего на тепловых электростанциях Единой энергетической системы действует около двух тысяч вырабатывающих электрическую энергию агрегатов, о состоянии и судьбе которых приходится думать.

ЛЭП-500 - линия электропередачи напряжением 500 кВ Саяно-Шушенской ГЭС (фото справа).

Беседу вел специальный корреспондент журнала "Наука и жизнь" Р. Сворень.

Словарик

ТЭС
теплоэлектростанция с классическими паровыми турбинами и котлами;
ТЭЦ
теплоэлектроцентраль, тепловая электростанция, поставляющая одновременно электричество и тепло (горячую воду) для отопления и бытовых нужд;
КЭС
конденсационная электростанция (данная ТЭС не выдает потребителю тепло, отработавший пар конденсируется и возвращается в котел);
ГРЭС
государственная районная электростанция (очень крупная ТЭС или ТЭЦ, снабжающая электроэнергией большой регион и поставляющая ее далеким потребителям);
АЭС
атомная электростанция с паровыми турбинами и котлами, получающими тепло от атомного реактора;
АТЭЦ
атомный аналог ТЭЦ, наряду с электричеством поставляет тепло;
ГЭС
гидроэлектростанция, ротор генератора вращает гидротурбина, ее приводит в движение падающая вода;
ПЭС
приливная электростанция, гидротурбину вращают потоки воды во время морских приливов и отливов;
ВЭС
ветроэлектростанция, использует энергию воздушных потоков;
ГеоЭС
геотермальная станция, ее паровой котел получает тепло от теплообменников, расположен ных на большой глубине, обычно в районах вулканической активности;
СЭС
солнечная электростанция, использует панели фотоэлементов (либо классическую схему ТЭС, где паровой котел нагревают собранные с большой поверхности солнечное лучи);
ГАЭС
гидроаккумулирующая станция, работающая в комплексе с ГЭС (при избытке электроэнергии мощные насосы закачивают воду в водохранилище, с появлением нагрузки вода вращает турбины гидростанции).

*Мощность - показатель работоспособности, силы, активности действий. В электроэнергетике мощность - это энергия, которую генератор выдает, а потребитель использует за одну секунду. Единицы мощности - ватт (Вт), более крупные - киловатт (1 кВт = 1000 Вт), мегаватт (1 МВт = 1000 кВт = 106 Вт), гигаватт (1 ГВт = 1000 МВт = 109 Вт). Чтобы почувствовать, что стоит за этими цифрами, напомним: довольно яркая лампочка потребляет мощность 100 Вт, домашняя электроплита 2-3 кВт, электродвигатель трамвая или троллейбуса - примерно 100 кВт, поезд метро - 300-500 кВт. Крупному промышленному предприятию в среднем нужна мощность 50-100 МВт, а жилые районы такого города, как Москва, в вечерние часы потребляют никак не меньше, чем 2-3 тыс. МВт. Одна из основных характеристик, которыми пользуются энергетики, - установленная мощность электростанции или отдельного генератора. Это, по сути, то, что они должны отдавать в идеальном случае. Реальная, или, как ее называют, действующая мощность, как правило, немного меньше установленной.

*Общее количество энергии. Произведенная электростанцией или полученная потребителем энергия - это суммарное, итоговое ее количество, как правило, за длительный период. Единица произведенной (полученной) энергии - джоуль (Дж) - количество энергии, которое отдает источник мощностью 1 ватт за 1 секунду (1 Дж = 1 Вт. 1 с). У энергетиков в ходу более крупная единица - киловатт-час (1 кВт.ч = 3,6. 106 Дж); появляется это соотношение очень просто: 1 киловатт = =103 ватт, а 1 час = 3,6.103 секунды. Полезно вспомнить, что, согласно показаниям счетчика ваша, квартира потребляет примерно 100-200 кВт.ч электроэнергии в месяц, то есть около двух тысяч в год. Крупная электростанция вырабатывает порядка миллиарда киловатт-часов в год, в целом по России годовое производство электроэнергии приближается к триллиону киловатт-часов.

ЕДИНАЯ ЭЛЕКТРОЭНЕРГЕТИЧЕСКАЯ СИСТЕМА, совокупность электроэнергетических систем, связанных единым процессом производства (комбинированной выработки электрической и тепловой энергии), передачи и распределения электрической энергии в условиях централизованного оперативно-диспетчерского управления (ОДУ). Организация электроэнергетических систем (ЭЭС) в разных странах имеет существенные различия, которые обусловлены историческим развитием и условиями последовательного углубления интеграции энергокомпаний. Имеются ЭЭС, в которых функционируют сотни и тысячи компаний различной формы собственности - государственной, общественной, частной, смешанной (например, США, Германия, Финляндия), а также ЭЭС, в которых производство, передача и распределение электроэнергии (ЭЭ) осуществляются централизованно - одной энергокомпанией (например, Франция, Италия, бывший СССР). Единая энергетическая система (ЕЭС) России охватывает всю территорию страны, объединяет более 90% производственного потенциала электроэнергетики, является одним из крупнейших в мире централизованно управляемых энергообъединений. Техническую основу производства электроэнергии ЕЭС России составляют 559 электростанций (мощностью 5 МВт и выше) общей мощностью 198,4 миллионов кВт (табл.).

Электростанции ЕЭС России связаны системообразующими и распределительными ЛЭП (смотри Линия электропередачи) общей протяжённостью свыше 2,5 миллионов км, напряжением 220, 330, 400, 500, 750 и 1150 кВ. Энергетическая система, расположенная на территории субъектов Российской Федерации, образует региональную энергетическую систему (РЭС); РЭС, объединённые между собой системообразующими ЛЭП, составляют объединённую энергетическую систему (ОЭС). На территории Российской Федерации располагаются семь ОЭС: Центра, Северо-Запада, Волги, Юга, Урала, Сибири и Востока. Особенности управления ЕЭС России обусловлены большой протяжённостью электрических сетей, крайне неравномерным распределением энергоресурсов и производительных сил по территории страны, сложностью структуры генерирующих мощностей и схемы системообразующих сетей. Структура вертикально интегрированной организации электроэнергетики позволила развивать широкомасштабные передающие системы и строить крупные ЭЭС.

Планирование и расчёт режимов работы ЕЭС обеспечиваются применением современных экономико-математических методов с использованием ЭВМ для системы ОДУ. Верхним уровнем ОДУ является системный оператор - Центральное диспетчерское управление ЕЭС России (специализированная организация, осуществляющая единоличное управление технологическими режимами работы объектов электроэнергетики и уполномоченная на выдачу оперативных диспетчерских команд и распоряжений, обязательных для всех субъектов ОДУ, субъектов электроэнергетики и потребителей ЭЭ). В рамках инвестиционной программы развития электроэнергетики Российской Федерации в 2006-11 годах предусматривается строительство свыше 40,9 тысяч МВт генерирующих мощностей, 107 тысяч MB·А трансформаторной мощности за счёт ввода новых и реконструкции действующих подстанций различных классов напряжений, возведение 12 тысяч км новых системообразующих и 18 тысяч км распределительных ЛЭП. Принцип централизованного функционирования ЕЭС России позволяет снизить суммарную потребность в генерирующей мощности и сэкономить капитальные затраты, обеспечить эффективное использование топливно-энергетических ресурсов разных регионов страны с учётом экологических требований.

Г. А. Салтанов.

Лит.: Зарубежные энергообъединения. М., 2001; Решетов В. И., Семенов В. А., Лисицын Н. В. Единая энергетическая система России на рубеже веков. М., 2002.

ГОСТ 21027-75 дает следующее определение Единой энергосистемы :

Единая энергосистема - совокупность объединённых энергосистем (ОЭС), соединённых межсистемными связями, охватывающая значительную часть территории страны при общем режиме работы и имеющая диспетчерское управление

Место среди энергосистем Европы

Выделяют три крупных независимых энергообъединения в Европе - Северную (NORDEL), Западную (UCTE) и Восточную (ЕЭС/ОЭС) синхронные зоны (NORDEL и UCTE в июле 2009 года вошли в состав нового европейского объединения - ENTSO-E). Под ЕЭС/ОЭС понимается ЕЭС России в совокупности с энергосистемами стран СНГ, Балтии и Монголии.

Структура

ЕЭС России охватывает практически всю обжитую территорию страны и является крупнейшим в мире централизованно управляемым энергообъединением.

ЕЭС России включает в себя 69 энергосистем на территории 79 субъектов российской Федерации , работающих в составе шести работающих параллельно ОЭС:

  • ОЭС Центра,
  • ОЭС Юга,
  • ОЭС Северо-Запада,
  • ОЭС Средней Волги,
  • ОЭС Урала
  • Сибири

и ОЭС Востока, работающей изолированно от ЕЭС России.

Кроме того, ЕЭС России осуществляет параллельную работу с ОЭС Украины, ОЭС Казахстана, ОЭС Белоруссии, энергосистемами Эстонии, Латвии, Литвы, Грузии и Азербайджана, а также с NORDEL (связь с Финляндией через вставку постоянного тока в Выборге).

Энергосистемы Белоруссии, России, Эстонии, Латвии и Литвы образуют так называемое «Электрическое кольцо БРЭЛЛ», работа которого координируется в рамках подписанного в 2001 году Соглашения о параллельной работе энергосистем БРЭЛЛ.

Ценовые зоны

По состоянию на июль 2012 года российская энергосистема разделена на две ценовые зоны: первая включает в себя европейские, уральские, южные и северо-западные территории России, вторая - Сибирь. В этих зонах, по сути, два отдельных энергорынка. Разделение историческое - они не соединены высоковольтными сетями. По той же причине ценовые зоны, в свою очередь, разделены на 27 зон свободного перетока. Внутри них нет ограничений по передаче энергии.

Преимущества объединения электрических станций и сетей в ЕЭС России

Параллельная работа электростанций в масштабе Единой энергосистемы позволяет реализовать следующие преимущества :

  • снижение суммарного максимума нагрузки ЕЭС России на 5 ГВт;
  • сокращение потребности в установленной мощности электростанций на 10-12 ГВт;
  • оптимизация распределения нагрузки между электростанциями в целях сокращения расхода топлива;
  • применение высокоэффективного крупноблочного генерирующего оборудования;
  • поддержание высокого уровня надёжности и живучести энергетических объединений.

Совместная работа электростанций в Единой энергосистеме обеспечивает возможность установки на электростанциях агрегатов наибольшей единичной мощности, которая может быть изготовлена промышленностью, и укрупнения электростанций. Увеличение единичной мощности агрегатов и установленной мощности электростанций имеет значительный экономический эффект.

История создания

Принципы централизации выработки электроэнергии и концентрации генерирующих мощностей на крупных районных электростанциях были заложены ещё при реализации плана ГОЭЛРО. Развитие электроэнергетики СССР в 1930-е годы характеризовалось началом формирования энергосистем.

В 1926 году в Московской энергосистеме была создана первая в стране центральная диспетчерская служба (ЦДС, в настоящее время ЦДС носят названия Региональных диспетчерских управлений и имеют статус филиалов ОАО «СО ЕЭС»).

К 1935 году в стране работало шесть энергосистем, в том числе Московская, Ленинградская, Донецкая и Днепровская. Первые энергосистемы были созданы на основе ЛЭП напряжения 110 кВ, за исключением Днепровской, в которой использовались линии напряжения 154 кВ, принятого для выдачи мощности Днепровской ГЭС.

В 1942 году для координации работы трех районных энергетических систем: Свердловской, Пермской и Челябинской было создано первое Объединённое диспетчерское управление - ОДУ Урала. В 1945 году было создано ОДУ Центра.

В начале 1950-х годов было начато строительство каскада гидроэлектростанций на Волге. В 1956 году объединение энергосистем Центра и Средней Волги линией электропередачи 400 кВ «Куйбышев - Москва», обеспечивавшей выдачу мощности Куйбышеской ГЭС, обозначило начало формирования Единой энергосистемы СССР. Последовавшее строительство ЛЭП 500 кВ от каскада Волжских ГЭС обеспечило возможность параллельной работы энергосистем Центра, Средней и Нижней Волги и Урала и завершило первый этап создания Единой энергетической системы.

В июле 1962 году было подписано соглашение о создании в Праге Центрального диспетчерского управления (ЦДУ) энергосистем Болгарии, Венгрии, ГДР, Польши, СССР, Румынии и Чехословакии. Это соглашение привело к созданию крупнейшей на планете энергосистемы «Мир» (установленная мощность электростанций более 400 ГВт).

В 1967 году на базе ОДУ Центра было создано Центральное диспетчерское управление (ЦДУ) ЕЭС СССР, принявшее на себя также функции диспетчерского управления параллельной работой энергосистем ОЭС Центра.

В 1970 году к ЕЭС была присоединена ОЭС Закавказья, а в 1972 году - ОЭС Казахстана и отдельные районы Западной Сибири.

В 1978 году ОЭС Сибири была присоединена к ЕЭС СССР.

К 1990 году в состав ЕЭС СССР входили 9 из 11 энергообъединений страны, охватывая 2/3 территории СССР, на которых проживало более 90 % населения.

В ноябре 1993 г. из-за большого дефицита мощности на Украине был осуществлён вынужденный переход на раздельную работу ЕЭС России и ОЭС Украины, что привело к раздельной работе ЕЭС России с остальными энергосистемами, входящими в состав энергосистемы «Мир». В дальнейшем параллельная работа энергосистем, входящих в состав «Мира», с центральным диспетчерским управлением в Праге не возобновлялась.

После распада СССР электрические связи между некоторыми энергообъединениями в составе ЕЭС России стали проходить по территории независимых государств и электроснабжение части регионов оказалось зависимым от этих государств (связи 500-1150 кВ между ОЭС Урала и Сибири, проходящие по территории Казахстана, связи ОЭС Юга и Центра, частично проходящие по территории Украины, связи ОЭС Северо-Запада с Калининградской энергосистемой, проходящие по территории стран Балтии).

В 1995 году ОДУ Центра выведено из состава ЦДУ ЕЭС России в качестве Дирекции оперативно-диспетчерского управления объединенной энергетической системы Центра «Центрэнерго» (филиал РАО «ЕЭС России»).

2012: Планы объединения 2-х энергосистем России

В июле 2012 года вице-премьер Правительства России Аркадий Дворкович поручил Минэнерго , Минэкономразвития , «Совету рынка», «Системному оператору» и ФСК проработать целесообразность строительства сетей для объединения первой и второй ценовых зон оптового энергорынка. Об этом говорится в протоколе правительственной комиссии по вопросам развития электроэнергетики, которую возглавляет Дворкович. Срок исполнения поручения в документе не указан .

Самый обсуждаемый вариант - линии электропередачи и подстанции, передающие энергию из Сибири через Казахстан на Урал и в центр, рассказали два источника, близких к комиссии. Строительством должна заняться ФСК .

Построить нужно около 2500 км сетевой инфраструктуры, подсчитал директор Фонда энергетического развития Сергей Пикин. По его словам, стоимость строительства превысит $4 млрд. Плюс в случае объединения зон нужны будут новые электростанции совокупной мощностью 6 ГВт. Это обойдется еще примерно в $15 млрд, говорит Пикин. По данным из предыдущей генеральной схемы развития электроэнергетики (проект в итоге был исключен оттуда), строительство только 1500 км сетей обошлось бы в 300-350 млрд руб.

Объединение двух зон было бы выгодно потребителям европейской части России. В Сибири электроэнергии с избытком и она меньше стоит. Эту энергию можно будет поставлять в европейскую часть России, снижая общую цену, считает Пикин. Энергосистема станет устойчивее: колебаний мощности и потерь в сетях будет меньше, резервов - больше, добавил представитель «Системного оператора».

Объединение ценовых зон увеличит конкуренцию между генерирующими компаниями, отмечает начальник профильного управления Федеральной антимонопольной службы Виталий Королев. Следом должна снизиться и цена электричества, объяснил он. Королев считает, что в случае такого объединения впоследствии можно будет отменить «прайскэпы» - предельные уровни цен на мощность, которые сейчас есть на большей части территории России.

Идея правильная, отмечает глава «Совета рынка» Вячеслав Кравченко. Но из-за высоких затрат на проект можно не добиться главной цели - снижения стоимости электроэнергии в европейской части России и при этом получить рост цен в Сибири. Ведь тарифы ФСК неизбежно вырастут, указывает Кравченко. Председатель наблюдательного совета НП «Сообщество покупателей рынков электроэнергии» Александр Старченко советует в таком случае скорректировать инвестпрограмму ФСК, убрав из нее менее важные проекты. Аналитик «ВТБ капитала» Михаил Расстригин предлагает другой вариант. По его мнению, основную финансовую нагрузку по строительству новых сетей должно взять на себя государство, чтобы не пошатнуть деятельность ФСК этим «проектом века». Представитель ФСК сказал, что для начала нужно выполнить технико-экономическое обоснование проекта с оценкой его экономической эффективности.

Спешить с реализацией проекта чиновники не собираются. Сотрудник Минэкономразвития отмечает, что вопрос объединения зон напрямую увязан с инвестпрограммой ФСК. Поэтому, прежде чем принимать окончательное решение, нужно подсчитать стоимость проекта. Чиновник считает, что объединение зон - «вопрос не сегодняшнего дня», ведь «очевидно, что проект дорогой, а у ФСК есть ограничения по тарифам».

Административно-хозяйственное управление ЕЭС

До 1 июля 2008 года высшим уровнем в административно-хозяйственной структуре управления электроэнергетической отраслью являлось ОАО «РАО ЕЭС России ».

Диспетчерско-технологическое управление работой ЕЭС России осуществляет ОАО «СО ЕЭС ».

В постановлении Правительства Российской Федерации от 26.01.2006 № 41 были утверждены критерии отнесения к Единой национальной (общероссийской) электрической сети (ЕНЭС) магистральных линий электропередачи и объектов электросетевого хозяйства. Следует отметить, что в других нормативных документах аббревиатура ЕНЭС расшифровывается как «Единая национальная электрическая сеть», что является более правильным с технической точки зрения.

Большинство тепловых электростанций России находятся в собственности семи ОГК (оптовые генерирующие компании) и четырнадцати ТГК (территориальные генерирующие компании).

Большая часть производственных мощностей гидроэнергетики сосредоточена в руках компании «РусГидро ».

Эксплуатирующей организацией АЭС России является ОАО «Концерн Росэнергоатом» .

Реформирование электроэнергетики подразумевало создание в России оптового и розничных рынков электрической энергии. Деятельность по обеспечению функционирования коммерческой инфраструктуры оптового рынка, эффективной взаимосвязи оптового и розничных рынков, формированию благоприятных условий для привлечения инвестиций в электроэнергетику, организации на основе саморегулирования эффективной системы оптовой и розничной торговли электрической энергией и мощностью осуществляет некоммерческое партнёрство «Совет рынка». Деятельность по организации торговли на оптовом рынке, связанная с заключением и организацией исполнения сделок по обращению электрической энергии, мощности и иных объектов торговли, обращение которых допускается на оптовом рынке, осуществляет коммерческий оператор оптового рынка - ОАО «Администратор торговой системы оптового рынка электроэнергии» (ОАО «АТС»).

Особенности ЕЭС

ЕЭС России располагается на территории, охватывающей 8 часовых поясов. Необходимостью электроснабжения столь протяжённой территории обусловлено широкое применение дальних электропередач высокого и сверхвысокого напряжения. Системообразующая электрическая сеть ЕЭС (ЕНЭС) состоит из линий электропередачи напряжения 220, 330, 500 и 750 кВ. В электрических сетях большинства энергосистем России используется шкала напряжений 110-220 - 500-1150 кВ. В ОЭС Северо-Запада и частично в ОЭС Центра используется шкала напряжений 110-330 - 750 кВ. Наличие сетей напряжения 330 и 750 кВ в ОЭС Центра связано с тем, что сети указанных классов напряжения используются для выдачи мощности Калининской, Смоленской и Курской АЭС, расположенных на границе использования двух шкал напряжений. В ОЭС Северного Кавказа определённое распространение имеют сети напряжения 330 кВ.

Структура генерирующих мощностей

ОЭС, входящие в состав ЕЭС России, имеют различную структуру генерирующих мощностей, значительная часть энергосистем не сбалансирована по мощности и электроэнергии. Основу российской электроэнергетики составляют около 600 электростанций суммарной мощностью 210 ГВт, работающих в составе ЕЭС России.

Две трети генерирующих мощностей приходится на тепловые электростанции. Около 55% мощностей ТЭС составляют теплоэлектроцентрали (ТЭЦ), а 45% - конденсационные электростанции (КЭС). Мощность гидравлических (ГЭС), в том числе гидроаккумулирующих (ГАЭС) электростанций составляет 21% установленной мощности электростанций России. Мощность атомных электростанций составляет 11% установленной мощности электростанций страны.

Для ЕЭС России характерна высокая степень концентрации мощностей на электростанциях. На тепловых электростанциях эксплуатируются серийные энергоблоки единичной мощностью 500 и 800 МВт и один блок мощностью 1200 МВт на Костромской ГРЭС. Единичная мощность энергоблоков действующих АЭС достигает 1000 МВт.

Технические проблемы функционирования ЕЭС

Одной из серьёзных проблем функционирования ЕЭС является слабость межсистемных, а иногда и системообразующих связей в энергосистеме, что приводит к «запиранию» мощностей электрических станций . Слабость межсистемных связей в ЕЭС обусловлена ее территориальной распределённостью. Ограничения в использовании связей между различными ОЭС и большинства наиболее важных связей внутри ОЭС определяются в основном условиями статической устойчивости; для ЛЭП, обеспечивающих выдачу мощности крупных электростанций, и ряда транзитных связей определяющими могут быть условия динамической устойчивости.

Проводившиеся исследования выявили, что стабильность частоты в ЕЭС России ниже, чем в UCTE. Особенно большие отклонения частоты происходят весной и во второй половине ночи, что свидетельствует об отсутствии гибких средств регулирования частоты .

Перспективы развития ЕЭС

Развитие ЕЭС в обозримой перспективе описывается в Генеральной схеме размещения объектов электроэнергетики до 2020 года.

Системный оператор завершил работу над технико-экономическим обоснованием (ТЭО) объединения ЕЭС/ОЭС с UCTE. Такое объединение означало бы создание самого большого в мире энергетического объединения, расположенного в 12 часовых поясах, суммарной установленной мощностью более 860 ГВт .

2 апреля 2009 года в Москве состоялась Международная отчётная конференция «Перспективы объединения энергосистем Восток-Запад (Результаты ТЭО синхронного объединения ЕЭС/ОЭС с UCTE)» .

ТЭО показало, что «синхронное объединение энергосистем UCTE и ЕЭС/ОЭС возможно при условии проведения ряда технических, эксплуатационных и организационных мероприятий и создания необходимых правовых рамок, определённых исследованием. Поскольку выполнение этих условий, вероятно, потребует длительного времени, синхронное объединение должно рассматриваться как долгосрочная перспектива. Для построения совместной, крупнейшей в мире рыночной платформы для торговли электроэнергией между синхронными зонами UCTE и ЕЭС/ОЭС также может быть рассмотрено создание несинхронных связей, что, однако, требует проведения отдельных исследований заинтересованными сторонами» .