Сглаживание динамических рядов. Методы сглаживания рядов динамики (укрупнение интервалов, скользящей средней, аналитическое выравнивание)

Сглаживание динамических рядов. Методы сглаживания рядов динамики (укрупнение интервалов, скользящей средней, аналитическое выравнивание)

В ходе обработки динамического ряда важнейшей задачей является выявление основной тенденции развития явления (тренда) и сглаживание случайных колебаний. Закономерности изменения явления во времени не проявляются в каждом конкретном уровне ряда. Это связано с действием на явления общих и случайных причин. Поэтому для решения этой задачи в статистике существуют следующие методы обработки рядов:

  • 1. Метод сглаживания путем укрупнения интервалов во времени.
  • 2. Выравнивание рядов динамики методом скользящей средней.
  • 3. Метод аналитического выравнивания.

Метод укрупнения интервалов - наиболее простой способ. Он заключается в преобразовании первоначальных рядов динамики в более крупные по продолжительности временных периодов, что позволяет более четко выявить действие основной тенденции изменения уровней. Новые уровни рассчитываются, как средние из укрупненных периодов. Переменная средняя рассчитывается по формулам простой средней арифметической. К примеру, если продолжительность периода равна 3, то переменная средняя будет рассчитана:

Недостатком этого приема является то, что идет потеря информации за счет укорачивания ряда.

Метод скользящей средней - это такая динамическая средняя, которая последовательно рассчитывается при передвижении на один интервал при заданной продолжительности периода.

Последовательность определения скользящей средней:

Формируются укрупненные интервалы, состоящие из одинаковых уровней. Если при расчете средней учитываются три уровня, скользящая средняя называется трехчленной, пять уровней - пятичленной и т.д. Если, предположим, продолжительность периода равна 3, то скользящие средние рассчитываются следующим образом:

Исчисляют первый средний уровень по арифметической простой:

y1 = y1/m, где

y1 - I-ый уровень ряда;

m - членность скользящей средней(продолжительность периода)

Заметим, первая средняя записывается напротив середины первого уровня.

  • - Первый уровень отбрасывают, а в исчисление средней включают уровень, следующий за последним уровнем, участвующем в первом расчете. Процесс продолжается до тех пор, пока в расчет не будет включен последний уровень исследуемого ряда динамики y n .
  • - По ряду динамики, построенному из средних уровней, выявляют общую тенденцию развития явления.

Отрицательной стороной использования метода скользящей средней является то, что, как и в случае с методом укрупнения идет потеря информации за счет укорачивания ряда. В дальнейшем затруднен прогноз развития явлений, так как нет достаточного математического обоснования для осуществления прогноза.

Более точным способом отображения тенденции динамического ряда является аналитическое выравнивание, т. е. выравнивание с помощью аналитических формул. В этом случае динамический ряд выражается в виде функции у (t), в которой в качестве основного фактора принимается время t, и изменения аргумента функции определяют расчетные значения у t .

Фактическими (или эмпирическими) уровнями ряда динамики называют исходные данные об изменении явления, т. е. данные, полученные опытным путем, посредством наблюдения. Они обозначаются уi. Расчетными (или выровненными теоретическими) уровнями ряда называют значения, полученные в результате подстановки в уравнение тренда значений t, и обозначают их?.

Целью аналитического выравнивания динамического ряда является определение аналитической или графической зависимости f(t). На практике по имеющемуся временному ряду задают вид и находят параметры функции f(t), а затем анализируют поведение отклонений от тенденции. Функцию f(t) выбирают таким образом, чтобы она давала содержательное объяснение изучаемого процесса.

Чаще всего при выравнивании используются следующие зависимости:

линейная;

параболическая;

экспоненциальная

  • 1. Линейная зависимость выбирается в тех случаях, когда в исходном временном ряду наблюдаются более или менее постоянные абсолютные и цепные приросты, не проявляющие тенденции ни к увеличению, ни к снижению.
  • 2. Параболическая зависимость используется, если абсолютные цепные приросты сами по себе обнаруживают некоторую тенденцию развития, но абсолютные цепные приросты абсолютных цепных приростов (разности второго порядка) никакой тенденции развития не проявляют.
  • 3. Экспоненциальные зависимости применяются, если в исходном временном ряду наблюдается либо более или менее постоянный относительный рост (устойчивость цепных темпов роста, темпов прироста, коэффициентов роста), либо, при отсутствии такого постоянства, -устойчивость в изменении показателей относительного роста.

Таким образом, целью аналитического выравнивания является:

  • - определение вида функционального уравнения;
  • - нахождения параметров уравнения тренда методом наименьших квадратов, где сумма квадратов отклонений фактических уровней от выровненных теоретических на искомой линии должна быть минимальна
  • ?(y i - ?) 2 >min;
  • - расчет «теоретических», выровненных уровней, отображающих основную тенденцию ряда динамики.

Графическое отображение изменения уровней ряда играет большую роль в применении данного вида выравнивания. Оно позволяет ускорить процедуру анализа и увеличить степень наглядности полученных результатов.

Тенденцию развития социально-экономических явлений обычно изображают кривой, параболой, гиперболой и прямой линией.

Наиболее простой и часто встречающейся в практике является линейная зависимость, описываемая уравнением:

где у i - фактические уровни;

у t - теоретическое значение уровня;

t - периоды времени - фактор времени.

«а» и «в» - параметры уравнения.

Так как «t» известно, то для нахождения «у t » необходимо определить параметры «а» и «в». Их находят методом наименьших квадратов, где сумма квадратов отклонений фактических уровней от выровненных теоретических на искомой линии должна быть min ?(y i - ?) 2 >min; Этому требованию удовлетворяет следующая система нормальных уравнений:

n - количество уровней ряда динамики.

Эту систему уровней можно упростить, если взять t (период времени) таким, чтобы сумма периодов равнялась нулю: Уt = 0.

Для этого необходимо периоды ряда динамики пронумеровать так, чтобы перенести в середину ряда начало отчета времени. В ряду динамики с нечетным числом периодов времени нумерация начинается с середины ряда и с нуля «0», а с четным числом периодов с «-1» и «+1». Тогда уравнения примут следующий вид:

an = Уу, отсюда получим «а»

После нахождения параметров необходимо рассчитать выровненные уровни ряда путем подстановки значения номера периода.

Таким образом, аналитическое уравнение сводится к замене фактических уровней теоретическими.

Анализ рядов динамики предполагает и исследование сезонной неравномерности (сезонных колебаний), под которыми понимают устойчивые внутригодовые колебания, причиной которых являются многочисленные факторы, в том числе и природно-климатические. Сезонные колебания измеряются с помощью индексов сезонности, которые рассчитываются двумя способами в зависимости от характера динамического развития.

При относительно неизменном годовом уровне явления индекс сезонности можно рассчитать как процентное отношение средней величины из фактических уровней одноименных месяцев к общему среднему уровню за исследуемый период:

Одной из задач анализа рядов динамики, является установление закономерностей изменения уровней изучаемого показателя во времени.

В некоторых случаях эта закономерность развития объекта вполне ясно отображается уровнями динамического ряда. Однако часто приходится встречаться с такими рядами динамики, когда уровни ряда претерпевают самые различные изменения. В подобных случаях для определения основной тенденции развития, достаточно устойчивой на протяжении данного периода, используют особые приёмы обработки рядов динамики.

Уровни ряда динамики формируются под совокупным влиянием множества длительных и кратковременных факторов, в том числе различных, случайных обстоятельств. В то же время выявление основной тенденции изменения уровня ряда предполагает её количественное выражение, которое свободно от случайных воздействий. Существуют различные методы выявления тенденции развития динамики. Одним из приёмов выявления основной тенденции является метод укрупнения интервалов. Этот способ основан на укрупнении периодов времени, к которым относятся уровни ряда. Например, ряд ежесуточного выпуска продукции заменяется рядом месячного выпуска продукции и т.д.

Другой метод - метод подвижной (скользящей) средней. Суть метода состоит в замене исходных уровней средними арифметическими за определённые периоды. При этом сначала для временного ряда определяется интервал сглаживания . Если необходимо сгладить мелкие беспорядочные колебания, то интервал сглаживания берут по возможности большим; интервал сглаживания уменьшают, если нежно сохранить более мелкие колебания. При прочих равных условиях интервал сглаживания рекомендуется брать нечетным. Процесс сглаживания, для первых уровней динамического ряда вычисляется их средняя арифметическая; это будет сглаженное значение уровня ряда, находящегося в средине интервала сглаживания. Затем интервал сглаживания сдвигается на один уровень вправо, повторяется вычисление средней арифметической и т. д. Для вычисления сглаженных уровней временного ряда применяется формула:

(5.6)

В результате такой процедуры получаются сглаженных значений уровней ряда; при этом первые уровней и последние уровней ряда теряются (не сглаживаются).

К этому методу сглаживания (выравнивания) примыкает экспоненциальное сглаживание. Особенность данного метода заключается в том, что в процедуре нахождения сглаженного уровня используются значения только предшествующих уровней ряда, взятые с определенным весом. Если для исходного динамического ряда соответствующие сглаженные значения уровней обозначить через , , то экспоненциальное сглаживание осуществляется по формуле:


где параметр сглаживания; называется коэффициентом дисконтирования.

Используя приведенное выше рекуррентное соотношение (5.7) для всех уровней ряда, начиная с первого и кончая моментом времени , можно получить, что экспоненциальная средняя, т. е. сглаженное данным методом значение уровня ряда, является взвешенной средней всех предшествующих уровней:

, (5.8)

где величина, характеризующая начальные условия.

В практических задачах обработки экономических времен­ных рядов рекомендуется (необоснованно) выбирать величину параметра сглаживания в интервале от 0,1 до 0,3. Других точ­ных рекомендаций для выбора оптимальной величины пара­метра пока нет. В отдельных случаях Р. Браун предлагает определять величину исходя из длины сглаживаемого ряда:

Что касается начального параметра So, то в конкретных задачах его берут или равным значению первого уровня ряда , или равным средней арифметической нескольких первых членов ряда, например, членов :

Указанный выше порядок выбора величины So обеспе­чивает хорошее согласование сглаженного и исходного ря­дов для первых уровней. Если при подходе к правому концу временного ряда сглаженные этим методом значения при выбранном параметре начинают значительно отличаться от соответствующих значений исходного ряда, необходимо перейти на другой параметр сглаживания. Заметим, что при этом методе сглаживания не теряются ни начальные, ни ко­нечные уровни сглаживаемого временного ряда.

I . ВВЕДЕНИЕ

Работа экономиста любой специальности неизбежно связана со сбором, разработкой и анализом статистических материалов. Нередко экономисту самому приходится проводить статистические разработки. Поэтому изучение науки статистики при подготовке специалистов имеет большое значение в системе высшего экономического образования.

Статистика – это сложная и многогранная наука. С точки зрения преподавания ее в высшей школе она включает в себя целый ряд учебных дисциплин. Это – общая теория статистики, экономическая статистика и целая серия отраслевых статистик: промышленная, сельскохозяйственная, торговая, транспортная и т.д. Каждый экономист должен уметь читать статистические цифры и пользоваться ими в своей работе, обосновывать цифрами свои предложения, уметь статистические цифры анализировать. Экономист-аналитик должен в совершенстве владеть методами экономико-математического анализа.

Итак, статистика – это цифры живые, красноречивые. Однако это определение исходит из итогов статистической работы, результатом которой являются статистические цифры.

Статистикой часто называют сам процесс статистической работы – сбор массовых первичных данных, их обработку и анализ, а людей, которые этим занимаются, называют статистиками. В настоящее время статистика является важной отраслью практической деятельности, в которой участвуют много специалистов. Чтобы охарактеризовать, например, как растет продукция промышленности, необходимо каждой фабрике повседневно учитывать произведенные изделия. Данные учета нужно сводить в итоги по группам предприятий, отраслям производства, всей промышленности в целом. Эта работа проводится систематически, с подведением месячных, квартальных, годовых итогов.

В данной курсовой работе мной рассматриваются основные методы сглаживания и выравнивания динамических рядов.

На развитие явления во времени оказывают влияние факторы, различные по характеру и силе воздействия. Одни из них оказывают практически постоянное воздействие и формируют в рядах динамики определенную тенденцию развития. Воздействие же других факторов может быть кратковременным или носить случайный характер.

Поэтому при анализе динамики речь идет не просто о тенденции развития, а об основной тенденции, достаточно стабильной (устойчивой) на протяжении изученного этапа развития.

Задача состоит в том, чтобы выявить общую тенденцию в изменении уровней ряда, освобожденную от действия различных случайных факторов. С этой целью ряды динамики подвергаются обработке методами укрупнения интервалов, скользящей средней и аналитического выравнивания.

В процессе выполнения практической и аналитической частей курсовой работы я использовала для удобства, быстроты и проверки ручных вычислений табличный редакторе Excel.

Microsoft Excel является прикладной программой, предназначенной для работы с таблицами данных, преимущественно числовых.

Табличный процессор позволяет обрабатывать входящие в таблицы данные, а не только представлять их в электронной форме. Вычисления в таблицах Excel осуществляются при помощи формул. Формула может содержать числовые константы, ссылки на ячейки и функции Excel, соединённые знаками математических операций. Формулы применяются для описания связи между значениями, хранящимися в различных ячейках. Расчет по заданным формулам выполняется автоматически. Изменение содержимого какой – либо одной ячейки приводит к пересчету значений всех ячеек, которые с ней связаны формульными отношениями, а при обновлении каких-либо частных данных обновление всей таблицы происходит автоматически. Формула гарантирует, что при последующем редактировании таблицы не нарушит её целостность и правильность производимых в ней вычислений.

II . ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

изучение изменений анализируемых показателей во времени, т.е. их динамика . Эта задача решается при помощи анализа рядов динамики (или временных рядов).

Ряд динамики (или динамический ряд) представляет собой ряд расположенных в хронологической последовательности числовых значений статистического показателя, характеризующих изменение общественных явлений во времени.

В каждом ряду динамики имеются два основных элемента: время t и конкретное значение показателя (уровень ряда) y .

Уровни ряда – это показатели, числовые значения которых составляют динамический ряд. Время – это моменты или периоды, к которым относятся уровни.

Построение и анализ рядов динамики позволяют выявить и измерить закономерности развития общественных явлений во времени. Эти закономерности не проявляются четко на каждом конкретном уровне, а лишь в тенденции, в достаточно длительной динамике. На основную закономерность динамики накладываются другие, прежде всего случайные, иногда сезонные влияния. Выявление основной тенденции в изменении уровней, именуемой трендом, является одной из главных задач анализа рядов динамики.

По времени, отраженному в динамических рядах, они разделяются на моментные и интервальные.

Моментным называется ряд динамики, уровни которого характеризуют состояние явления на определенные даты (моменты времени).

Примером моментного ряда могут служить следующие данные о численности населения.

Численность постоянного населения (на конец года), млн.чел.

Таблица 1

1970 г. 1980г. 1990г. 1991г. 1993 г. 1994г. 1995 г.
130,6 138,8 148,2 148,3 148,0 147,9 147,6

Этот ряд характеризует динамику численности населения России в 1970-1995 гг.

Поскольку в каждом последующем уровне содержится полностью или частично значение предыдущего уровня, суммировать уровни моментного ряда не следует, так как это приводит к повторному счету.

Интервальным (периодическим) рядом динамики называется такой ряд, уровни которого характеризуют размер явления за конкретный период времени (год, квартал, месяц). Примером такого ряда могут служить данные о динамике добычи нефти в РФ.

Добыча нефти в Российской Федерации, млн.т.

Таблица 2

1990 г. 1991 г. 1992 г. 1993 г. 1994 г. 1995 г.
516 462 399 354 318 307

Этот ряд характеризует снижение уровня добычи нефти в России.

Значения уровня интервального ряда в отличие от уровней моментного ряда не содержатся в предыдущих или последующих показателях, их можно просуммировать, что позволяет получить ряды динамики более укрупненных периодов. Например, суммирование уровней добычи нефти за каждый год по данным, приведенным выше, позволяет определить ее добычу за все шесть лет в целом и в среднем за год.

Интервальный ряд, где последовательные уровни могут суммироваться, можно представить как ряд с нарастающими итогами. При построении таких рядов производится последовательное суммирование смежных уровней. Этим достигается суммарное обобщение результата развития изучаемого периода (месяца, квартала, года).

Одной из важнейших задач статистики является определение в рядах динамики общей тенденции развития явления.

В некоторых случаях закономерность изменения явления, общая тенденция его развития явно и отчетливо отражается уровнями динамического ряда (уровни на изучаемом периоде непрерывно растут или непрерывно снижаются).

К основным правилам формирования динамических (в том числе и временных) рядов относятся:

· периодизация динамики – это процесс выделения однородных этапов развития

· однокачественность отдельных уровней ряда

· сравнимость уровней ряда (должны быть одинаковые единицы измерения, единая методика расчета, одинаковый круг объектов и др.)

· последовательность и непрерывность во времени уровней ряда.

Временные ряды могут быть представлены в виде трех основных способов:

1. Табличный способ представления

Таблица 3

где t i – моменты t

y i – уровень ряда, характеризует значение изученного показателя на момент времени t i .

2. Графический способ , когда с помощью прямоугольной системы координат откладываются точки (ti ; yi ).


Рис. 1 Фактический уровень урожайности 1986-1995 гг.

Геометрический способ представления имеет преимущество перед табличным своей наглядностью и с помощью эмпирической ломаной мы можем увидеть тенденцию развития изучаемого признака, а также визуально установить (хоть и приблизительно) ту линию, которая максимально приближена к опытным данным, т.е. сглаживает опытные точки или иначе может установить закономерность развития изучаемого признака, устранив субъективные ошибки, зависящие от производителя (аналитика) и составить аналитическую модель.

3. Аналитический способ, т.е. в виде зависимости, которая характеризует зависимость между изучаемым признаком и временным параметром y = f ( t ).

Метод скользящей средней  метод изучения в рядах динамики основной тенденции развития явления.

Суть метода скользящей средней состоит в том, что вычисляется средний уровень из определенного числа первых по порядку уровней ряда, затем  средний уровень из того же числа уровней, начиная со второго, далее  начиная с третьего и т. д. Таким образом, при расчетах среднего уровня как бы «скользят» по ряду динамики от его начала к концу, каждый раз отбрасывая один уровень в начале и добавляя один следующий.

Средняя из нечетного числа уровней относится к середине интервала. Если интервал сглаживания четный, то отнесение средней к определенному времени невозможно, она относится к середине между датами. Для того чтобы правильно отнести среднюю из четного числа уровней, применяется центрирование, т. е. нахождение средней из средней, которую относят уже к определенной дате.

Покажем применение скользящей средней на следующем примере. Пример 3.1 . На основе данных об урожайности зерновых культур в хозяйстве за 1989–2003 гг. проведем сглаживание ряда методом скользящей средней.

Динамика урожайности зерновых культур в хозяйстве за 1989–2003 гг. и расчет скользящих средних

1 . Рассчитаем трехлетние скользящие суммы. Находим сумму урожайности за 1989–1991 гг.: 19,5  23,4  25,0  67,9 и записываем это значение в 1991 г. Затем из этой суммы вычитаем значение показателя за 1989 г. и прибавляем показатель за 1992 г.: 67,9 – 19,5  22,4  70,8 и это значение записываем в 1992 г. и т. д.

2 . Определим трехлетние скользящие средних по формуле простой средней арифметической:

Полученное значение записываем в 1990 г. Затем берем следующую трехлетнюю скользящую сумму и находим трехлетнюю скользящую среднюю: 70,8: 3  23,6, полученное значение записываем в 1991 г. и т. д.

Аналогичным образом рассчитываются четырехлетние скользящие суммы. Их значения представлены в графе 4 таблицы данного примера.

Четырехлетние скользящие средние определяются по формуле простой средней арифметической:

Это значение будет отнесено между двумя годами - 1990 и 1991 гг., т. е. в середине интервала сглаживания. Для того чтобы найти четырехлетние скользящие средние центрированные, необходимо найти среднюю из двух смежных скользящих средних:

Эта средняя будет отнесена к 1991 г. Аналогичным образом рассчитываются остальные центрированные средние; их значения записываются в графу 6 таблицы данного примера.

4. Метод аналитического выравнивания

Уравнение прямой при аналитическом выравнивании ряда динамики имеет следующий вид:

где - выровненный (средний) уровень динамического ряда; a 0 , a 1 - параметры искомой прямой; t - обозначение времени.

Способ наименьших квадратов дает систему двух нормальных уравнений для нахождения параметров a 0 и a 1:

где у  исходный уровень ряда динамики ; n  число членов ряда.

Система уравнений упрощается, если значения t подобрать так, чтобы их сумма равнялась нулю, т. е. начало времени перенести в середину рассматриваемого периода.

Если то

Исследование динамики соц.-экон. явлений и установление основной тенденции развития дают основание для прогнозирования (экстраполяции)  определения будущих размеров уровня экономического явления. Используют следующие методы экстраполяции:

средний абсолютный прирост  с/показатель, исчисляемый для выражения средней скорости роста (снижения) соц.-эк. процесса. Определяется по формуле:

■ средний темп роста;

экстраполяцию на основе выравнивания по какой-либо аналитической формуле.Метод аналитического выравнивания-метод исследования динамики соц.-экон. явлений, позволяющий установить основные тенденции их развития.

Рассмотрим применение метода аналитического выравнивания по прямой для выражения основной тенденции на ПримерЕ 4.1 . Исходные и расчетные данные определения параметров уравнения прямой:

Министерство образования Российской Федерации

Всероссийский заочный финансово – экономический институт

Ярославский филиал

Кафедра статистики

Курсовая работа

по дисциплине:

«Статистика»

задание № 19

Студент: Курашова Анастасия Юрьевна

Специальность «Финансы и кредит»

3 курс, периферия

Руководитель: Сергеев В.П.

Ярославль, 2002 г.

План

1. Введение……………………………………………………………3 стр.

2. Теоретическая часть…………………………………………… …4 стр.

2.1 Основные понятия о рядах динамики…………………………...4 стр.

2.2 Методы сглаживания и выравнивания динамических рядов……………………………………………………………….6 стр.

2.2.1 Методы «механического сглаживания»………………………6 стр.

2.2.2 Методы «аналитического» выравнивания…………………. 8 стр.

3. Расчетная часть……………………………………………… ……11 стр.

4. Аналитическая часть……………………………………………. .16 стр.

5. Заключение ………………………………………………………. 25 стр.

6. Список литературы……………………………………………… 26 стр.

7. Приложения………………………………………………………. 27 стр.

Введение

Полная и достоверная статистическая информация является тем необходимым основанием, на котором базируется процесс управления экономикой. Вся информация, имеющая народнохозяйственную значимость, в конечном счете, обрабатывается и анализируется с помощью статистики.

Именно статистические данные позволяют определить объемы валового внутреннего продукта и национального дохода, выявить основные тенденции развития отраслей экономики, оценить уровень инфляции, проанализировать состояние финансовых и товарных рынков, исследовать уровень жизни населения и другие социально-экономические явления и процессы.

Овладение статистической методологией - одно из условий познания конъюнктуры рынка, изучения тенденций и прогнозирования, принятия оптимальных решений на всех уровнях деятельности.

Сложной, трудоемкой и ответственной является заключительная, аналитическая стадия исследования. На этой стадии рассчитываются средние показатели и показатели распределения, анализируется структура совокупности, исследуется динамика и взаимосвязь между изучаемыми явлениями и процессами.

На всех стадиях исследования статистика использует различные методы. Методы статистики - это особые приемы и способы изучения массовых общественных явлений.

I. Теоретическая часть.

1.1 Основные п онятия о рядах динамики.

Ряды динамики – статистические данные, отображающие развитие во времени изучаемого явления. Их также называют динамическими рядами, временными рядами.

В каждом ряду динамики имеется два основных элемента:

1) показатель времени t ;

2) соответствующие им уровни развития изучаемого явления y;

В качестве показаний времени в рядах динамики выступают либо определенные даты (моменты), либо отдельные периоды (годы, кварталы, месяцы, сутки).

Уровни рядов динамики отображают количественную оценку (меру) развития во времени изучаемого явления. Они могут выражаться абсолютными, относительными или средними величинами.

Ряды динамики различаются по следующим признакам:

1) По времени. В зависимости от характера изучаемого явления уровни рядов динамики могут относиться или к определенным датам (моментам) времени, или к отдельным периодам. В соответствии с этим ряды динамики подразделяются на моментные и интервальные.

Моментные ряды динамики отображают состояние изучаемых явлений на определенные даты (моменты) времени. Примером моментного ряда динамики является следующая информация о списочной численности работников магазина в 1991 году (таб. 1):

Таблица 1

Списочная численность работников магазина в 1991 году

Особенностью моментного ряда динамики является то, что в его уровни могут входить одни и те же единицы изучаемой совокупности. Хотя и в моментном ряду есть интервалы – промежутки между соседними в ряду датами, -- величина того или иного конкретного уровня не зависит от продолжительности периода между двумя датами. Так, основная часть персонала магазина, составляющая списочную численность на 1.01.1991 , продолжающая работать в течение данного года, отображена в уровнях последующих периодов. Поэтому при суммировании уровней моментного ряда может возникнуть повторный счет.

Посредством моментных рядов динамики в торговле изучаются товарные запасы, состояние кадров, количество оборудования и других показателей, отображающих состояние изучаемых явлений на отдельные даты (моменты) времени.

Интервальные ряды динамики отражают итоги развития (функционирования) изучаемых явлений за отдельные периоды (интервалы) времени.

Примером интервального ряда могут служить данные о розничном товарообороте магазина в 1987 – 1991 гг. (таб. 2):

Таблица 2

Объем розничного товарооборота магазина в 1987 - 1991 гг.

Объем розничного товарооборота, тыс. р.

Каждый уровень интервального ряда уже представляет собой сумму уровней за более короткие промежутки времени. При этом единица совокупности, входящая в состав одного уровня, не входит в состав других уровней.

Особенностью интервального ряда динамики является то, что каждый его уровень складывается из данных за более короткие интервалы (субпериоды) времени. Например, суммируя товарооборот за первые три месяца года, получают его объем за I квартал, а суммируя товарооборот за четыре квартала, получают его величину за год, и т. д. При прочих равных условиях уровень интервального ряда тем больше, чем больше длина интервала, к которому этот уровень относится.

Свойство суммирования уровней за последовательные интервалы времени позволяет получить ряды динамики более укрупненных периодов.

Посредством интервальных рядов динамики в торговле изучают изменения во времени поступления и реализации товаров, суммы издержек обращения и других показателей, отображающих итоги функционирования изучаемого явления за отдельные периоды.

Структура ряда динамики:

Всякий ряд динамики теоретически может быть представлен в виде составляющих:

1) тренд – основная тенденция развития динамического ряда (к увеличению или снижению его уровней) ;

2) циклические (периодические колебания, в том числе сезонные);

случайные колебания.

1. 2. Методы сглаживания и выравнивания динамических рядов.

Исключение случайных колебаний значений уровней ряда осуществляется с помощью нахождения «усредненных» значений. Способы устранения случайных факторов делятся на две больше группы:

1. Способы «механического» сглаживания колебаний путем усреднения значений ряда относительно других, расположенных рядом, уровней ряда.

2. Способы «аналитического» выравнивания, т. е. определения сначала функционального выражения тенденции ряда, а затем новых, расчетных значений ряда.

1.2. 1 Методы «механического» сглаживания .

Сюда относятся:

а. Метод усреднения по двум половинам ряда , когда ряд делится на две части. Затем, рассчитываются два значения средних уровней ряда, по которым графически определяется тенденция ряда. Очевидно, что такой тренд не достаточно полно отражает основную закономерность развития явления.

б. Метод укрупнения интервалов , при котором производится увеличение протяженности временных промежутков, и рассчитываются новые значения уровней ряда.

в. Метод скользящей средней . Данный метод применяется для характеристики тенденции развития исследуемой статистической совокупности и основан на расчете средних уровней ряда за определенный период. Последовательность определения скользящей средней:

Устанавливается интервал сглаживания или число входящих в него уровней. Если при расчете средней учитываются три уровня, скользящая средняя называется трехчленной, пять уровней – пятичленной и т.д. Если сглаживаются мелкие, беспорядочные колебания уровней в ряду динамики, то интервал (число скользящей средней) увеличивают. Если волны следует сохранить, число членов уменьшают.

Исчисляют первый средний уровень по арифметической простой:

y1 = Sy1/m, где

y1 – I-ый уровень ряда;

m – членность скользящей средней.

Первый уровень отбрасывают, а в исчисление средней включают уровень, следующий за последним уровнем, участвующем в первом расчете. Процесс продолжается до тех пор, пока в расчет y будет включен последний уровень исследуемого ряда динамики y n .

По ряду динамики, построенному из средних уровней, выявляют общую тенденцию развития явления.

Отрицательной стороной использования метода скользящей средней является образование сдвигов в колебаниях уровней ряда, обусловленных «скольжением» интервалов укрупнения. Сглаживание с помощью скользящей средней может привести к появлению «обратных» колебаний, когда выпуклая «волна» заменяется на вогнутую.