По какому принципу составляется межотраслевой баланс. Ш экономико-математические модели, их сущность и виды. матрица коэффициентов прямых материальных затрат

По какому принципу составляется межотраслевой баланс. Ш экономико-математические модели, их сущность и виды. матрица коэффициентов прямых материальных затрат

3. Модель межотраслевого баланса Леонтьева

3.1. Описание модели межотраслевого баланса

Межотраслевой баланс в экономике – это метод анализа взаимосвязей между различными секторами экономической системы.

Предположим, что исследуемую экономическую систему можно разделить на несколько отраслей (секторов), производящих определенные товары и услуги (например: сельское хозяйство, промышленность, транспорт, энергетика и т. п.). При производстве товаров и услуг в каждом секторе расходуются ресурсы в виде сырья, рабочей силы, оборудования и др., которые производятся как в других секторах хозяйства, так и в данном секторе. Это означает, что каждый сектор экономики выступает в системе межотраслевых связей одновременно производителем и потребителем.

Цель балансового анализа – определить, сколько продукции должен произвести каждый сектор для того, чтобы удовлетворить все потребности экономической системы в его продукции.

Рассмотрим упрощенную модель межотраслевого баланса – баланс экономики, состоящей из трех отраслей – сельского хозяйства, промышленности и домашних хозяйств. В качестве единицы измерения объемов товаров и услуг каждого сектора выберем их стоимость. Предположим, что вся продукция сельского хозяйства составляет 200 денежных единиц, из них 50 единиц потребляется внутри самой отрасли, 40 единиц – в промышленности и 110 единиц – в домашних хозяйствах. Продукция промышленности составляет 250 единиц, из них 70 единиц потребляются в сельском хозяйстве, 30 единиц – в промышленности и 150 – в домашних хозяйствах. Домашние хозяйства производят 300 единиц продукции, из них 80 единиц потребляются в сельском хозяйстве, 180 – в промышленности и 40 – внутри самого сектора. Эти данные можно свести в таблицу межотраслевого баланса.

Таблица 3.1 .

Таблица межотраслевых связей

Сельское

хозяйство

Промыш-ленность

Домашние

хозяйства

Сельское хозяйство

Промышленность

Домашние хозяйства

Данной таблицей представлена экономическая система, в которой все отрасли являются производящими, вся произведенная продукция потребляется этими же производящими отраслями. Такая модель межотраслевых связей называется замкнутой . В замкнутой модели объем затрат каждого сектора (сумма элементов в столбце таблицы) равен объему произведенной продукции (сумма элементов в соответствующей строке).

Таблицы межотраслевого баланса описывают потоки товаров и услуг между отраслями экономики в течение фиксированного промежутка времени, например в течение года.

Обозначим через B = {b i , j }, где I = 1, …, n, j = 1, …, n, матрицу, элемент которой b i , j – это количество товаров и услуг i-ой отрасли экономики А = {а i , j }, потребляемое в j-ой отрасли. В замкнутой экономической системе баланс между совокупным выпуском и затратами каждой отрасли можно описать равенствами:, где k = 1, …, n. Матрица В называется матрицей межотраслевого баланса, или матрицей Леонтьева.

Рассмотрим открытую систему межотраслевых связей, в которой вся произведенная продукция (совокупный продукт) разделяется на две части: одна часть продукции (промежуточный продукт) идет на потребление в производящих секторах, а другая часть (конечный продукт) потребляется вне сферы материального производства – в секторе конечного спроса.

Обозначим:

x j – объем выпуска i-й отрасли;

b i , j – объем продукции i-ой отрасли, потребляемой в j-ой отрасли;

c i – конечный продукт, т. е. объем потребления продукции i-ой отрасли в непроизводственной сфере;

– количество продукции i -ой отрасли, которое расходует ся на производство одной единицы продукции j-ой отрасли. Числа a i , j называются коэффициентами прямых затрат j-ой отрасли и характеризуют технологию этой отрасли.

Межотраслевой баланс – это равенство объема выпуска каждой производящей отрасли суммарному объему ее продукции, потребляемой производственными отраслями и отраслью конечного спроса, т. е.

или
или
, i = 1… n .

Последние равенства описывают технологию производства и структуру экономических связей и означают, что в отрасль конечного спроса поступает та часть произведенной продукции, которая осталась после того, как обеспечены потребности производящих отраслей.

Для дальнейшего рассмотрения модели Леонтьева сделаем два важных предположения:

    Сложившуюся технологию производства считаем неизменной, таким образом матрица А = {а i , j } постоянна.


Пусть Х = {x i } – вектор объемов производства в отраслях, тогда А. Х – потребляемые объемы продукции этих отраслей, таким образом, вне производственной сферы – на потребление остается только Х – А. Х. Назовем экономику высокоэффективной, если А. Х  С, т. е. в производственной сфере тратится меньше, чем в сфере потребления.

3.2. Продуктивность модели Леонтьева

Пусть потребность непроизводственной сферы выражается вектором спроса, т. е. вектором С, вектор выпуска – вектором Х, структурная матрица экономики, т. е. матрица, элементами которой являются коэффициенты прямых затрат, – матрицей А, то соотношение баланса в матричной форме будет иметь вид: С = Х – А. Х или С = (Е – А) . Х, где Е – единичная матрица.

Одна из основных задач межотраслевого баланса – найти при заданной структурной матрице экономической системы в условиях баланса совокупный выпуск, необходимый для удовлетворения заданного спроса. То есть необходимо найти вектор производства, удовлетворяющий уравнению баланса, при этом, учитывая экономическую интерпретацию, этот вектор производства должен быть неотрицательным. Поэтому говорят, что модель Леонтьева продуктивна, если уравнение X – AX = C имеет неотрицательное решение для любого С ³ 0, т. е. матрица А позволяет произвести любой неотрицательный вектор потребления.

Теорема . Модель Леонтьева с матрицей А продуктивна, если и только если существует неотрицательная матрица, обратная к Е – А.

В самом деле, пусть Е – A имеет обратную матрицу и эта матрица (Е – А) -1 неотрицательна, тогда Х = (Е – А) -1 С и, поскольку С ³ 0, то и Х ³ 0.

Рассмотрим еще один критерий продуктивности. Пусть модель Леонтьева задана матрицей размерами n × n. Обозначим через N множество {1, …, n}. Пусть SÍN (S – подмножество N). Говорят, что подмножество S изолировано, если a ij = 0, всякий раз, когда jÎS, iÎN\S (N без S, т. е. N-S). Понятие изолированности подмножества S допускает прозрачную экономическую интерпретацию: отрасли, номера которых принадлежат S, не используют товары, производимые в отраслях с номерами, не принадлежащими S.

Матрица называется неразложимой, если в ней нет изолированных подмножеств, кроме S = N или S = Ø (пустое множество). Понятие неразложимости также имеет прозрачный экономический смысл: любая отрасль использует, хотя бы косвенно, продукцию всех отраслей. Ведь если a ij ¹ 0, то j-я отрасль непосредственно использует продукцию i-й отрасли. Но если даже a ij = 0, т. е. j-я отрасль не использует продукцию i-й отрасли непосредственно, все равно при неразложимой матрице от данной отрасли до любой другой можно найти цепочку отраслей, использующих продукцию друг друга.

Для неразложимых матриц условие продуктивности выглядит так: если сумма элементов каждой строки не больше единицы и хотя бы для одной строки строго меньше единицы, то модель Леонтьева с этой матрицей продуктивна.

Для продуктивности действительно есть основания: продукции каждой отрасли хватает для нужд самого производства, более того, есть отрасль, продукция которой даже остается на потребление, а неразложимость, т. е. взаимосвязанность всех отраслей, позволяет надеяться на то, что этот остаток может преобразоваться в остатки на потребление и продукции других отраслей.

Для матрицы А число l называется собственным числом, если найдется ненулевой вектор Y, такой, что AY = lY. Такой вектор также называется собственным вектором, отвечающим данному собственному числу l (вектор Y не определяется по l однозначно – всякий вектор, ему пропорциональный, также будет собственным вектором, отвечающим этому же собственному числу l).

Модель Леонтьева с матрицей А продуктивна, если и только если матрица имеет собственное число l А <1, которое к тому же является наибольшим по модулю из всех собственных чисел матрицы.

3.3. Прямые и полные затраты в модели Леонтьева

Напомним, что модель задается матрицей А прямых затрат. В этой матрице a ij – количество единиц продукции, расходуемой на изготовление, производство одной единицы продукции j-й отрасли. Числа a ij называются коэффициентами прямых затрат j-й отрасли и характеризуют технологию этой отрасли. Пусть Х = (x j) обозначает вектор валового производства, тогда АХ есть израсходованные в процессе производства ресурсы и для непроизводственной сферы остается С = Х – АХ.

Обозначим D = (E – A) -1 . Запишем выражение компонент вектора Х через компоненты вектора конечного спроса С:

,

тогда становится понятным, что элемент d ij матрицы (Е–А) -1 показывает, на сколько нужно увеличить выпуск i-й отрасли x i при увеличении на единицу конечного спроса c j на продукцию j-й отрасли.

Матрица D = (E–A) -1 называется матрицей полных затрат.

В экономической системе с заданной структурной матрицей А спрос всегда удовлетворяется, если для любого вектора спроса С существует вектор выпуска.

3.4. Цены в системе межотраслевых связей

Цены в открытой системе межотраслевых связей определяются из системы уравнений, каждое из которых устанавливает, что цена единицы продукции производящего сектора должна быть равна совокупным издержкам производства в расчете на единицу выпущенной в этом секторе продукции. В издержки входят не только плата за ресурсы, приобретенные в данной отрасли и других отраслях, но и добавленная стоимость (зарплата, прибыль предпринимателей, правительственные налоги и др.).

Обозначим:

v i – суммарные платежи за одну единицу произведенной i-м сектором продукции;

p j – цена единицы продукции j-го сектора;

b i , j – объем товаров и услуг i-го сектора, потребляемых при производстве продукции в j-м секторе.

Тогда
, но поскольку b ij = a ij . x j , то
.

Разделив на ненулевые x i , получим для искомых цен систему уравнений:

.

В матричной форме система уравнений для цен имеет вид: (Е–А) Т. Р = V, где А – структурная матрица экономики; V – заданный вектор платежей; Р – искомый вектор цен. Тогда цены Р можно найти по формуле Р = ((Е–А) Т) -1 V, или, что то же самое Р = ((Е–А) -1) Т V. Аналитические выражения цены Р через платежи имеют вид:

.

Из приведенных равенств видно, что элемент d ij матрицы (Е–А) -1 = D показывает, как изменится цена р i единицы продукции i-го сектора при изменении на единицу платежа v j в j-м секторе.

Поскольку Х Т V = X T (Е–А) Т P = ((Е–А)X) T = C T P, то для рассмотренной модели межотраслевого баланса справедливо тождество:

.

Левая часть этого тождества равна общей сумме добавленных стоимостей, выплачиваемых в сектор конечного спроса, а правая часть – суммарная стоимость продукции, поставленной производственными секторами в сектор конечного спроса. Другими словами, приведенное тождество подтверждает совпадение произведенного и использованного национального дохода.

3.5. Простейшая модель экспорта-импорта модели Леонтьева

Рассмотрим открытую систему межотраслевых связей на государственном уровне. Если экономика государства перестает быть самообеспечивающейся и государство начинает импортировать и экспортировать продукцию производственных секторов, в то время как сектор конечного спроса потребляет то же количество продукции производственных секторов, то устанавливается новый баланс между затратами и выпуском. Структурная матрица экономики А, а следовательно, и матрица D = (E–A) -1 остаются прежними, изменяется конечный спрос. К величине платежей в сектор конечного спроса каждого сектора нужно добавить объем экспорта и вычесть из него объем импорта: С к = С к + EI к, к = 1, …, n. Здесь С к – объем конечного продукта к-го сектора при наличии экспорта импорта, С к – неизменившийся конечный спрос на продукцию к-го сектора, EI к – объем экспорта (EI к > 0) или импорта (EI к < 0) продукции к-го сектора. Таким образом, в таблице межотраслевого баланса (табл. 3.2) столбец сектора конечного спроса разбивается на три столбца: столбец заданного конечного спроса, столбец экспорта-импорта и столбец конечного продукта, причем каждый элемент последнего из этих столбцов равен сумме соответствующих чисел в предыдущих двух.

Таблица 3.2 .

Таблица межотраслевых связей с учетом экспорта-импорта

Конечный спрос

Экспорт-импорт

Конечный продукт

Сельское хозяйство

Промышленность

Транспорт

Выпуск Х вычисляется по формуле Х = (Е–А) -1 С, где С = С + EI, С – неизменившийся конечный спрос, EI – объем экспорта-импорта, А – структурная матрица экономики. Вычислив вектор выпуска Х, можно найти по формуле b ij = a ij . x j элементы матрицы нового межотраслевого баланса В.

3.6. Задачи

1. Пусть экономическая система разбита на три отрасли. Использо вание продукции этих отраслей в них таково:
. Выпуск отраслей задан вектором

... Теоретические и прикладные аспекты случайных... , Л. Якокки, применения экономико -математических моделей в маркетинге – в... моделей и моделей марковских процессов / М. Б. Ермолаев, С. М. Комолов // Проблемы экономики , финансов и управления производством ...

  • Математическая модель управления предприятиями угольной промышленности российской федерации на региональном уровне

    Документ

    ... экономики и производственного менеджмента Дальневосточного Владивостокского государственного технического университета (г. Владивосток). E-mail: tai_43@ Математическая модель управления ... производство ... аспектов ... Теоретические основы и методы управления ...

  • 08 00 05 - «экономика и управление народным хозяйством» (экономика организация и управление предприятиями отраслями комплексами)

    Программа

    ... модели экономики . 2. Место и роль сельского хозяйства в национальной экономике Сельскохозяйственное производство ... национальной экономики Теоретические ... Экономико -математические модели управления математических моделей ...

  • Программа-минимум кандидатского экзамена по специальности 08 00 05 – «экономика и управление народным хозяйством» (экономика организация и управление предприятиями отраслями комплексами)

    Программа-минимум

    ... экономики России: исторический аспект ... национальной экономики Теоретические основы... Экономико -математические модели управления АПК. Общая классификация зкономико-математических моделей ... технологий в производстве и управлении . Современные и...

  • Экономика и управление производством

    Учебное пособие

    Описывает факторная модель : РП = ... производства и ускорения оборачиваемости оборотных средств; – экономико -математические ... это совокупность специальных теоретических знаний и профессиональных... человеческий или социальный аспект управления : лояльность и...

  • Межотраслевой баланс (МОБ , модель «затраты–выпуск» , метод «затраты–выпуск» ) - экономико-математическая балансовая модель, характеризующая межотраслевые производственные взаимосвязи в экономике страны. Характеризует связи между выпуском продукции в одной отрасли и затратами, расходованием продукции всех участвующих отраслей, необходимым для обеспечения этого выпуска. Межотраслевой баланс составляется в денежной и натуральной формах.

    Межотраслевой баланс представлен в виде системы линейных уравнений . Межотраслевой баланс (МОБ) представляет собой таблицу, в которой отражен процесс формирования и использования совокупного общественного продукта в отраслевом разрезе. Таблица показывает структуру затрат на производство каждого продукта и структуру его распределения в экономике. По столбцам отражается стоимостной состав валового выпуска отраслей экономики по элементам промежуточного потребления и добавленной стоимости. По строкам отражаются направления использования ресурсов каждой отрасли.

    В Модели МОБ выделяются четыре квадранта . В первом отражается промежуточное потребление и система производственных связей, во втором - структура конечного использования ВВП , в третьем - стоимостная структура ВВП, а в четвёртом - перераспределение национального дохода.

    Энциклопедичный YouTube

    • 1 / 5

      Теоретические основы межотраслевого баланса были разработаны В. В. Леонтьевым в Берлине, русскую версию его статьи под названием «Баланс народного хозяйства СССР » опубликовал журнал «Плановое хозяйство» в № 12 за 1925 год . В своей статье учёный показал, что коэффициенты, выражающие связи между отраслями экономики , достаточно стабильны и их можно прогнозировать .

      В 1930-е годы В. В. Леонтьев применил метод анализа межотраслевых связей с привлечением аппарата линейной алгебры для исследования экономики США . Метод стал известен под названием «затраты - выпуск». Во время Второй мировой войны разработанная Леонтьевым матрица «затраты - выпуск» для экономики Германии служила для выбора целей ВВС США . Аналогичный баланс для СССР, разработанный Леонтьевым, использовался властями США для принятия решения об объёмах и структуре Ленд-лиза .

      Признавая, что по ряду направлений советские межотраслевые исследования занимали достойное место в мировой науке , Леонтьев отчетливо понимал, что теоретические разработки советских ученых не находят практического применения в реальной экономике, где все решения принимались исходя из политической конъюнктуры:

      Западные экономисты часто пытались раскрыть «принцип» советского метода планирования. Они так и не добились успеха, так как до сих пор такого метода вообще не существует .

      Математическое описание модели Леонтьева

      Пусть y i {\displaystyle y_{i}} - конечный выпуск (для конечного потребления) продукции i-й отрасли, а y = (y 1 , y 2 , . . . , y n) T {\displaystyle y=(y_{1},y_{2},...,y_{n})^{T}} - вектор конечного выпуска (для конечного потребления) всех отраслей i=1..n. Обозначим A {\displaystyle A} - матрица технологических коэффициентов, где элементы матрицы a i j {\displaystyle a_{ij}} - необходимый объем продукции i-ой отрасли для производства единицы продукции j-й отрасли. Пусть также x i {\displaystyle x_{i}} - совокупный выпуск i-й отрасли, соответственно x = (x 1 , x 2 , . . . x n) T {\displaystyle x=(x_{1},x_{2},...x_{n})^{T}} - векторы совокупного выпуска всех отраслей.

      Совокупный выпуск всех отраслей x {\displaystyle x} складывается из двух компонент - выпуска для конечного потребления y {\displaystyle y} , и выпуска для межотраслевого потребления (для обеспечения производства продукции других отраслей). Выпуск для межотраслевого потребления с помощью матрицы технологических коэффициентов определяется как A x {\displaystyle Ax} , соответственно в сумме с конечным потреблением y {\displaystyle y} получим совокупный выпуск x {\displaystyle x} :

      X = A x + y {\displaystyle x=Ax+y}

      X = (I − A) − 1 y {\displaystyle x=(I-A)^{-1}y}

      Матрица (I − A) − 1 {\displaystyle (I-A)^{-1}} - матричный мультипликатор, поскольку фактически полученное выражение справедливо (в силу линейности модели) и для приращений выпусков:

      Δ x = (I − A) − 1 Δ y {\displaystyle \Delta x=(I-A)^{-1}\Delta y}

      Модель называется продуктивной, если все элементы вектора x {\displaystyle x} являются неотрицательными. Достаточным условием продуктивности модели является обратимость и неотрицательная определенность обратимость матрицы I − A {\displaystyle I-A} .

      Двойственная модель Леонтьева

      Двойственной к модели Леонтьева является следующая

      P = A T p + ν {\displaystyle p=A^{T}p+\nu }

      где p {\displaystyle p} - вектор цен отраслей, ν {\displaystyle \nu } - вектор добавленных стоимостей на единицу продукции, A T p {\displaystyle A^{T}p} - вектор затрат отраслей на единицу выпуска. Соответственно, p-A^Tp - вектор чистого дохода на единицу выпуска, который и приравнивается к вектору добавленных стоимостей, соответственно решение двойственной модели

      P = (I − A T) − 1 ν {\displaystyle p=(I-A^{T})^{-1}\nu }

      Пример расчета межотраслевого баланса

      Рассмотрим 2 отрасли промышленности: производство угля и стали. Уголь требуется для производства стали, а некоторое количество стали - в виде инструментов - нужно для добычи угля. Предположим, что условия таковы: для производства 1 т стали нужно 3 т угля, а для 1 т угля - 0,1 т стали.

      Мы хотим, чтобы чистый выпуск угольной промышленности был 200 000 тонн угля, а чёрной металлургии - 50 000 тонн стали. Если они будут производить только 200 000 и 50 000 тонн соответственно, то часть их продукции будет использована ими же и чистый выход будет меньше.

      Действительно, для производства 50 000 тонн стали требуется 3 ⋅ 5 ⋅ 10 4 = 15 ⋅ 10 4 {\displaystyle 3\cdot 5\cdot 10^{4}=15\cdot 10^{4}} тонн угля и чистый выход из 200 000 тонн произведенного угля будет равен: 2 ⋅ 10 5 − 1 , 5 ⋅ 10 5 {\displaystyle 2\cdot 10^{5}-1,5\cdot 10^{5}} = 50 000 тонн угля. Для производства 200 000 тонн угля нужно 0 , 1 ⋅ 2 ⋅ 10 5 {\displaystyle 0,1\cdot 2\cdot 10^{5}} = 20 000 тонн стали и чистый выход из 50 000 тонн произведенной стали будет равен 5 ⋅ 10 4 − 2 ⋅ 10 4 {\displaystyle 5\cdot 10^{4}-2\cdot 10^{4}} = 30 000 тонн стали.

      То есть, для того, чтобы произвести 200 000 тонн угля и 50 000 тонн стали, которые могли бы потребить отрасли не производящие уголь и сталь (чистый выпуск), нужно дополнительно производить уголь и сталь, которые используются для их производства. Обозначим x 1 {\displaystyle x_{1}} - необходимое общее количество угля (валовый выпуск), x 2 {\displaystyle x_{2}} - необходимое общее количество (валовый выпуск) стали. Валовый выпуск каждой продукции является решением системы уравнений:

      { x 1 − 3 x 2 = 2 ⋅ 10 5 − 0 , 1 x 1 + x 2 = 5 ⋅ 10 4 {\displaystyle \left\{{\begin{array}{lcr}x_{1}-3x_{2}&=2\cdot 10^{5}\\-0,1x_{1}+x_{2}&=5\cdot 10^{4}\\\end{array}}\right.}

      Решение: 500 000 т угля и 100 000 т стали. Для систематического решения задач расчета межотраслевого баланса находят, сколько угля и стали требуется для выпуска 1 т каждого продукта.

      { x 1 − 3 x 2 = 1 − 0 , 1 x 1 + x 2 = 0. {\displaystyle \left\{{\begin{array}{lcr}x_{1}-3x_{2}&=1\\-0,1x_{1}+x_{2}&=0.\\\end{array}}\right.}

      X 1 = 1 , 42857 {\displaystyle x_{1}=1,42857} и x 2 = 0 , 14286 {\displaystyle x_{2}=0,14286} . Чтобы найти, сколько угля и стали нужно для чистого выпуска т угля, нужно умножить эти числа на 2 ⋅ 10 5 {\displaystyle 2\cdot 10^{5}} . Получим: (285714 ; 28571) {\displaystyle (285714;28571)} .

      Аналогично составляем уравнения для получения количества угля и стали для выпуска 1 т стали:

      { x 1 − 3 x 2 = 0 − 0 , 1 x 1 + x 2 = 1. {\displaystyle \left\{{\begin{array}{lcr}x_{1}-3x_{2}&=0\\-0,1x_{1}+x_{2}&=1.\\\end{array}}\right.}

      X 1 = 4.28571 {\displaystyle x_{1}=4.28571} и x 2 = 1.42857 {\displaystyle x_{2}=1.42857} . Для чистого выпуска т стали нужно: (214286; 71429).

      Валовый выпуск для производства 2 ⋅ 10 5 {\displaystyle 2\cdot 10^{5}} тонн угля и 5 ⋅ 10 4 {\displaystyle 5\cdot 10^{4}} тонн стали: (285714 + 214286 ; 28571 + 71429) = (500000 ; 100000) {\displaystyle (285714+214286;28571+71429)=(500000;100000)} .

      Динамическая модель МОБ

      Первая в СССР и одна из первых в мире динамическая межотраслевая модель национальной экономики была разработана в Новосибирске доктором экономических наук Н. Ф. Шатиловым . Эта модель и анализ расчетов по ней описаны в его книгах: «Моделирование расширенного воспроизводства» (М., Экономика, 1967), «Анализ зависимостей социалистического расширенного воспроизводства и опыт его моделирования» (Новосибирск: Наука, Сиб.отд., 1974), и в книге «Использование народно-хозяйственных моделей в планировании» (под ред. А. Г. Аганбегяна и К. К. Вальтуха; М.: Экономика, 1974).

      В дальнейшем, под разные конкретные задачи, разрабатывались и другие динамические модели МОБ.

      На основе модели межотраслевого баланса Леонтьева и собственного опыта основатель «Научной школы стратегического планирования» Н.И. Ведута (1913-1998) разработал свою динамическую модель МОБ.

      В его схеме системно согласованы балансы доходов и расходов производителей и конечных потребителей - государства (межгосударственного блока), домашних хозяйств, экспортёров и импортёров (внешнеэкономический баланс).

      Динамическая модель МОБ разработана им методом экономической кибернетики. Она представляет собой систему алгоритмов, эффективно увязывающих задания конечных потребителей с возможностями (материальными, трудовыми и финансовыми) производителей всех форм собственности. На основе модели определяется эффективное распределение государственных производственных инвестиций. Внедрив динамическую модель МОБ, руководство страны получает возможность корректировать в режиме реального времени цели развития в зависимости от уточненных производственных возможностей резидентов и динамики спроса конечных потребителей. Динамическая модель МОБ изложена в книге «Социально эффективная экономика», опубликованной в 1998 году.

      Введение

      Экономический рост в любой стране невозможен без реализации новых крупномасштабных проектов, инвестиций и инноваций, без политической стабильности и устойчивости финансово-банковской системы, уверенности инвесторов и собственников капитала в твердости реализуемого политического курса, нацеленности на эффективность развития производства, разумности правил налогообложения. Экономико-математическое моделирование, являясь одним из эффективных методов описания сложных социально-экономических объектов и процессов в виде математических моделей, превращается тем самым в часть самой экономики.

      В данном реферате рассмотрена экономико-математическая модель межотраслевого баланса.. Это прикладная, макроэкономическая, аналитическая, балансовая, матричная модель; при этом существуют как статические, так и динамические МОБ.

      Одной из важных задач исследователей в области экономической мысли является изучение действующих экономических механизмов и поиск путей возможного их совершенствования.

      Ценный вклад в методику численного решения экономических моделей был сделан в 1940-х годах Василием Васильевичем Леонтьевым, американским экономистом российского происхождения создавшим метод затраты - выпуск. Развитие любого общества неизбежно связано с изменениями объёмов производства и структуры межотраслевых поставок продукции. Изменение объёмов и структуры поставок продукции может иметь различные последствия для функционирования национальной экономики.

      Отныне стало возможным численное решение больших систем уравнений. Современный компьютер способен с феноменальной скоростью решить систему из тридцати уравнений с таким же числом неизвестных. Метод затраты - выпуск вполне себя оправдывает, по крайней мере в теоретическом плане. Как заметил Леонтьев, имеется определенная связь между, скажем, продажей автомобилей в Нью-Йорке и спросом на хлеб в Детройте. По сути дела, всю страну можно рассматривать как единую систему учета, где каждый сектор имеет собственный "бюджет" экономической активности.

      В процессе совершенствования и усложнения модели «затраты--выпуск» был создан динамический вариант системы, учитывавший технический прогресс, перестройку промышленности, изменения ценовых пропорций. Модель была переведена на гибкие коэффициенты. Эта работа оказалась весьма успешной еще и потому, что параллельно с научным поиском совершенствовалось компьютерное обеспечение.

      1. Макроэкономические модели в прогнозировании

      Экономико-математические модели в прогнозировании широко используются при составлении социально-экономических прогнозов на макроэкономическом уровне. К таким моделям относятся:

      однофакторные и многофакторные модели экономического роста;

      модели распределения общественного продукта (ВВП, ВНП, НД);

      структурные модели;

      межотраслевые модели;

      модели воспроизводства основных фондов;

      модели движения инвестиционных потоков;

      модели уровня жизни и структуры потребления;

      модели распределения заработной платы и доходов и др.

      При использовании этих моделей необходимо учитывать воздействие факторного, лагового и структурного аспектов сбалансированности экономики и их синтеза на основе принципа оптимальности.

      Факторный аспект сбалансированности экономики основывается на взаимосвязи между объемом выпуска продукции и затратами факторов производства. Он сводится к определению такой пропорции между факторами производства, которая позволяет обеспечить заданный выпуск продукции. Для определения таких количественных пропорций используются показатели эффективности затрат живого и овеществленного труда и объемы этих затрат.

      Лаговый аспект сбалансированности основан на распределении во времени затрат факторов производства и достигаемого при их взаимодействии эффекта. Главные лаговые характеристики связаны с воспроизводством основных фондов, а значит и с затратами капитальных вложений. Лаг – это запаздывание, временной интервал между двумя взаимозависимыми экономическими явлениями, одно из которых является причиной, а второе – следствием.

      Структурный аспект сбалансированности основывается на пропорциях между I и II подразделениями общественного производства и взаимосвязях межотраслевых потоков продукции с элементами конечного потребления. Структурные межотраслевые модели широко используются для составления прогноза отраслевой структуры производства, основных производственных фондов, производственных капитальных вложений и трудовых ресурсов. Структурная сбалансированность народного хозяйства основывается на пропорциях между производством и распределением продукции. Производство общественного продукта может быть обеспечено при различной интенсивности потоков взаимозаменяемых предметов труда, а следовательно при разном соотношении между промежуточной и конечной продукцией.

      2. Модель межотраслевого баланса Леонтьева

      Динамическая модель межотраслевого баланса характеризует производственные связи народного хозяйства на ряд лет, отражает процесс воспроизводства в динамике. По модели межотраслевого баланса выполняются два типа расчетов: первый тип, когда по заданному уровню конечного потребления рассчитывается сбалансированный объем производства и распределения продукции; второй тип, включающий смешанные расчеты, когда по заданным объемам производства по одним отраслям (продуктам) и заданному конечному потреблению в других отраслях рассчитывается баланс производства и распределения продукции в полном объеме.

      Наибольшее распространение получила матричная экономико-математическая модель межотраслевого баланса. Она представляет собой прямоугольную таблицу (матрицу), элементы которой отражают связи экономических объектов. Количественные значения этих объектов вычисляются по установленным в теории матриц правилам. В матричной модели отражается структура затрат на производство и распределение продукции и вновь созданной стоимости.

      Уравнение строк матрицы записывается следующим образом:

      Хij + Уi = Хi

      j =1

      i= 1,2,…m;

      Хij – поставка продукции отрасли i в отрасль j;

      У i – конечная продукция отрасли i;

      Хi – валовая продукция отрасли i.

      Элементы строк представляют собой баланс распределения продукции, произведенной в различных отраслях экономики. Сумма внутренних производственных поставок и конечного продукта составляет валовой выпуск отрасли.

      Уравнение столбцов матрицы выглядит следующим образом:

      Хij + Zj = Хj, где

      Хij – затраты продукции отрасли i на производство продукции отрасли j;

      Zj – затраты первичныхресурсов и вновь созданная стоимость в отрасли j;

      Хj – валовые затраты включая вновь созданную стоимость в отрасли j.

      Хi = Хj при i=j. При этом равенство одноименных строк и столбцов означает, что стоимость распределенных и накопленных материальных благ и услуг равна сумме стоимостей произведенных затрат и вновь созданной стоимости.

      Межотраслевой баланс известен в науке и практике как метод “затраты – выпуск”, разработанный В.В. Леонтьевым. Этот метод сводится к решению системы линейных уравнений, где параметрами являются коэффициенты затрат на производство продукции. Коэффициенты выражают отношения между секторами экономики (коэффициенты текущих материальных затрат), они устойчивы и поддаются прогнозированию. Решение системы уравнений позволяет определить, какими должны быть выпуск и затраты в каждой отрасли, чтобы обеспечить производство конечного продукта заданного объема и структуры. Для этого составляется таблица межотраслевых потоков товаров. Неизвестными выступают выпуск и затраты товаров, произведенных и использованных в каждой отрасли. Их исчисление с помощью коэффициентов и означает объемы производства, обеспечивающие общее равновесие. В случае выявления диспропорции с учетом заказов потребителей, в том числе и государственных, составляется план-матрица выпуска всех видов материальных благ и затрат на их производство.

      Метод “затраты – выпуск” стал универсальным способом прогнозирования и планирования в условиях, как рыночной, так и директивной экономики. Он применяется в системе ООН, в США и других странах для прогнозирования и планирования экономики, структуры производства, межотраслевых связей.

      3. Динамическая модель межотраслевого баланса Леонтьева

      Межотраслевой баланс представляет собой экономико-математическую модель, образуемую перекрестным наложением строк и колонок таблицы, то есть балансов распределения продукции и затрат на ее производство, увязанных по итогам. Главные показатели здесь – коэффициенты полных и прямых затрат.

      В процессе совершенствования и усложнения статической модели был создан динамический вариант системы, учитывавший технический прогресс, перестройку промышленности, изменения ценовых пропорций. Модель была переведена на гибкие коэффициенты. Эта работа оказалась весьма успешной еще и потому, что параллельно с научным поиском совершенствовалось компьютерное обеспечение.

      В отличие от статических динамическая модель призвана отразить не состояние, а процесс развития экономики, установить непосредственную взаимосвязь между предыдущими и последующими этапами развития и тем самым приблизить анализ на основе экономико-математической модели к реальным условиям развития экономической системы.

      В рассматриваемой ниже динамической модели (которая является развитием статической межотраслевой модели) производственные капитальные вложения выделяются из состава конечной продукции, исследуется их структура и влияние на рост объёма производства. В основе построения модели в виде динамической системы уравнений лежит математическая зависимость между величиной капитальных вложений и приростом продукции. Решение системы, как и в случае статической модели приводит к определению уровней производства, но в динамическом варианте в отличие от статистического эти искомые уровни зависят от объёмов производства в предшествующих периодах.

      Ниже приведена схема первых двух квадрантов динамического межотраслевого баланса (таблица 1).

      ∆Ф11

      ∆Ф12

      ∆Ф1n

      ∆Ф21

      ∆Ф22

      ∆Ф2n


      . . .

      N

      ∆Фn1

      ∆Фn2

      ∆Фnn

      Таблица 1. Динамическая модель МОБ

      Модель содержит две матрицы межотраслевых потоков. Матрица текущих производственных затрат с элементами xij совпадает с соответствующей матрицей статистического баланса. Элементы второй матрицы ∆Фij показывают, какое количество продукции i-той отрасли направлено в текущем периоде в j-ую отрасль в качестве производственных капитальных вложений в её основные фонды. Материально это выражается в приросте в потребляющих отраслях производственного оборудования, сооружений, производственных площадей, транспортных средств и др.

      Для сравнения, в статистическом балансе потоки капиталовложений не дифференцируются по отраслям-потребителям и отражаются общей величиной в составе конечной продукции Yi каждой i-той отрасли. В динамической схеме конечный продукт Yi включает продукцию i-той отрасли, идущую в личное и общественное потребление, накопление непроизводственной сферы, прирост оборотных фондов, незавершённого строительства, на экспорт. Таким образом, сумма потоков капиталовложений и конечного продукта динамической модели равна конечной продукции статистического баланса (1,141):

      ∑∆Фij + Yi’= Yi

      поэтому уравнение распределения продукции вида (1.2) преобразуется в динамическом балансе в следующее (11,257):

      Xi =∑xij +∑∆Фij + Yi’ i=1…n (3.1)

      Межотраслевые потоки текущих затрат выражают как и в статической модели через валовую продукцию отраслей с помощью коэффициентов прямых материальных затрат:

      xij = aijXj

      полагая, что прирост продукции пропорционален приросту производственных фондов, можно записать (11,257):

      ∆Фij =φij∆Xj i,j =1…n (3.2)

      φij – коэффициенты пропорциональности, экономический смысл их заключается в том, что они показывают, какое количество продукции i-той отрасли должно быть вложено в j-тую отрасль для увеличения производственной мощности j-той отрасли на единицу продукции. Предполагается, что производственные мощности используются полностью и прирост продукции равен приросту мощности. Коэффициенты φij называются коэффициентами вложений, или коэффициентами приростной фондоёмкости.

      Они образуют квадратную матрицу n-го порядка (13):

      ||φ11 φ12 … φ1n ||

      ||φ21 φ22 … φ2n ||

      (φij) =

      || . . … . ||

      ||φn1 φn2 … φnn ||

      Эта матрица коэффициентов приростной фондоёмкости даёт значительный материал для экономического анализа и планирования капитальных вложений.

      Xi = ∑aijXj + ∑φij∆Xj + Yi’ i=1…n (3.3)

      Учитывая, что все объёмы валовой и конечной продукции относятся к некоторому периоду t, а прирост валовой продукции определён в сравнении с (t-1)-м периодом (11,258):

      Xi(t) = ∑aijXj(t) + ∑φij(Xj(t) – Xj(t-1)) + Yi’(t)

      Отсюда можно записать следующие соотношения:

      Xi(t) = ∑(aij+ φij) Xj(t) - ∑φij Xj(t-1) + Yi’(t) , i=1…n (3.4)

      Пусть нам известны уровни валовой продукции всех отраслей в предыдущем периоде (величины Xj(t-1) и конечный продукт отраслей в t-м периоде. Тогда соотношения (3.4) представляют собой систему n линейных уравнений с n неизвестными уровнями производства t-го периода.

      Таким образом, решение динамической системы линейных уравнений позволяет определить выпуск продукции в последующем периоде в зависимости от уровня, достигнутого в предыдущем периоде. Связь между периодами устанавливается через коэффициенты вложений φij, характеризующие фондоёмкость единицы прироста продукции.

      Эти более сложные по своему экономическому содержанию выводы из анализа динамической модели В. Леонтьева были опубликованы в форме дифференциальных уравнений в СССР в 1958 г. книге «Исследование структуры американской экономики».

      Заключение

      Межотраслевой баланс - это способ представления статистической информации об экономике страны. Он строится на основе агрегирования результатов деятельности отдельных предприятий.

      Статистические межотраслевые модели используются для разработки планов выпуска и потребления продукции и основываются на соотношениях межотраслевого баланса.

      В процессе совершенствования и усложнения модели «затраты--выпуск» был создан динамический вариант системы, учитывавший технический прогресс, перестройку промышленности, изменения ценовых пропорций. Модель была переведена на гибкие коэффициенты.

      Подводя итоги реферата, следует отметить, что метод Леонтьева отличает ясность и простота, универсальность и глобальность, другими словами пригодность для экономики отдельных стран и регионов, для мирового хозяйства в целом.

      По мнению В. Леонтьева, межотраслевой анализ может служить основным инструментом стратегического планирования.

      В настоящее время в национальной экономике существуют и продолжают возникать сложные проблемы, требующие межотраслевых обоснований. Использование же метода “затраты-выпуск” межотраслевого баланса позволяет не только изучить взаимозависимость между различными отраслями экономики, проявляющуюся во взаимовлиянии цен, объемов производства, капиталовложений и доходов, но и решать следующие задачи:

      Прогноз основных макроэкономических показателей (выпуск валового и конечного продукта, чистая продукция, материальные затраты, производственное потребление продукции и др. в разрезе отраслей материального производства) в зависимости от изменения как внешних, так и внутренних факторов; - прогноз оптовых цен продукции отраслей материального производства, уровня инфляции, стоимости потребительской корзины;

      Прогноз уровня безработицы;

      Прогноз экологической обстановки и оценка затрат на проведение природоохранных мероприятий; - оценка эффективности конкретных предложений по размещению производительных сил;

      Оценка эффективности межтерриториальных экономических связей;

      И многих других.

      Таким образом, на основе моделей В. Леонтьева может быть разработан комплекс моделей функционирования экономики с целью определения рациональных стратегий управления социально-экономическим развитием региона и страны в целом.

      Итак, в заключении реферата можно сделать вывод, что в отличие от статических динамическая модель призвана отразить не состояние, а процесс развития экономики, установить непосредственную взаимосвязь между предыдущими и последующими этапами развития и тем самым приблизить анализ на основе экономико-математической модели к реальным условиям развития экономической системы.

      Список использованной литературы.

      1. Гальперин В.М., Гребенников П.И., Леусский А.И., Тарасевич Л.С. Макроэкономика. Учебник. СПб.: СПбГУЭФ., 1999. – 656 с.

      2. Гранберг А. Г. Динамические модели народного хозяйства: Учебное пособие / М.: Экономика, 1985. - 240 с.

      3. Гранберг А. Г. Математические модели социалистической экономики: Учебное пособие / М.: Экономика, 1988. - 352 с.

      4. Леонтьев В.В. и др. Исследования структуры американской экономики: Теорет. и эмпир. анализ по схеме "затраты - выпуск" / Пер. с англ. М.: Госстатиздат, 1958. 640 с.

      5. Мэнкью Н.Г. Макроэкономика / Пер. с англ. – М.: Изд-во МГУ, 1994. – 736 с.

      Межотраслевой баланс (МОБ, метод «затраты-выпуск») -- экономико-математическая балансовая модель, характеризующая межотраслевые производственные взаимосвязи в экономике страны. Характеризует связи между выпуском продукции в одной отрасли и затратами, расходованием продукции всех участвующих отраслей, необходимым для обеспечения этого выпуска. Межотраслевой баланс составляется в денежной и натуральной формах.

      Межотраслевой баланс представлен в виде системы линейных уравнений. Межотраслевой баланс (МОБ) представляет собой таблицу, в которой отражен процесс формирования и использования совокупного общественного продукта в отраслевом разрезе. Таблица показывает структуру затрат на производство каждого продукта и структуру его распределения в экономике. По столбцам отражается стоимостный состав валового выпуска отраслей экономики по элементам промежуточного потребления и добавленной стоимости. По строкам отражаются направления использования ресурсов каждой отрасли.

      В межотраслевом балансе расположены три квадранта. В первом отражается промежуточное потребление и система производственных связей, во втором - структура конечного использования ВВП, в третьем - стоимостная структура ВВП.

      Теоретические основы межотраслевого баланса были разработаны в СССР в 1923--1924 гг. В 30-е гг. для изучения американской экономики американский экономист Василий Леонтьев применил метод анализа межотраслевых связей с привлечением аппарата линейной алгебры. Метод стал известен под названием «затраты -- выпуск».

      Балансовый метод применяется для анализа, нормирования, прогноза, планирования производства и распределения продукции на различных уровнях - от отдельно предприятия до народного хозяйства в целом. Характерные черты и особенности этого метода описываются с помощью матричных моделей баланса. К этим моделям относят межотраслевые балансы районов республик и народного хозяйства в целом, межпродуктовые балансы в натуральном выражении, матричные модели трудоемкости и фондоемкости продукции, модели промфинплана предприятий. Все эти модели построены по единой матричной схеме, которую удобнее всего рассмотреть на примере межотраслевого баланса производства и распределения продукции в народном хозяйстве.

      В модели межотраслевого баланса предполагается, что народное хозяйство состоит из множества отраслей, каждая из которых производит преимущественно один какой-либо продукт или оказывает определенные услуги. В процессе производства одна отрасль использует продукцию другой отрасли (сырье, материалы, оборудование, топливо, энергию, услуги) и между ними неизбежно возникают взаимные потоки товаров и услуг. Сложившаяся в соответствии с потребностями отраслей структура потоков товаров и услуг отражается в математической модели межотраслевого баланса системой уравнений следующего вида:

      х 1 = х 11 + х 12 + … + х 1n + 0у 1;

      х 2 = х 21 + х 22 + … + х 2n + у 2;

      ………………………………………………

      х n = х n1 + х n2 + … + х nn + у n.(1)

      Различают два вида баланса: стоимостной - по отраслям производства и натуральный - по видам продукции в натуральном выражении.

      В стоимостном балансе переменные х 1, х 2, … , х n означают объемы валовой продукции первой, второй, …, n-ой отрасли, x ij - объемы затрат i-й отрасли на производство продукции j-й отрасли, у i - конечный продукт, который не поступает в сферу текущего производственного потребления, а идет на конечное потребление (в личное и общественное, на накопление, экспорт, возмещение потерь и т.д.). Систему (1), которую учитывает структуру сложившихся взаимных затрат отраслей, можно назвать «экономической картой» народного хозяйства.

      В натуральном балансе переменные х 1, х 2, … , х n означают объемы n видов производственных продуктов в натуральных единицах (автомобилей в штуках, угля в тоннах и т.д.). Величина x ij означает объем потребления продукта I при производстве продукта j (угля при производстве автомобилей, электроэнергии при добыче угля и т.д.), а величина у i - конечный продукт - ту часть продукции, которая не используется в производственном потреблении. Например, для производства сахара в необходимом объеме х i требуется предусмотреть объемы его расходов x ij в кондитерской и молочной, промышленности, расходы на производство безалкогольных напитков, винодельческое, плодоовощное и консервное производства, а также необходимо удовлетворить спрос населения на сахар как конечный продукт личного потребления.

      В матричной форме системы уравнений (1) межотраслевой стоимостной и межпродуктовый натуральный балансы имеют одинаковое выражение. В том и другом случае общий объем продукции х i разделяется на объем производственного потребления - промежуточный продукт х i1, х i2, … , х in и объем непроизводственного потребления - конечный продукт у i, причем удельный вес их для разных отраслей стоимостного баланса и различных продуктов натурального баланса неодинаков.

      Однако стоимостной баланс в отличие от натурального наряду с уравнениями

      x j = в форме распределения продукции допускается построение уравнений в форме потребления продукции

      где - материальные затраты j-й потребляющей отрасли; Vj + mj - ее чистая продукция; Vj - сумма оплаты труда; mj - чистый доход - прибыль.

      Сделаем преобразование системы уравнений (1) - каждое из слагаемых x ij разделим и умножим на x j и обозначим

      ………………………………………………………………………….

      Это преобразование системы(1) приводит ее к обычной математической форме системы n линейных уравнений с n неизвестными х 1, х 2, … , х n (или у 1, у 2, … , у n) при заданных значениях коэффициентов а ij и величин у 1, у 2, … , у n (или х1, х2, … , хn).

      Коэффициенты называются коэффициентами прямых затрат. Для всех отраслей их задают в виде матрицы:

      Коэффициенты прямых затрат в натуральном балансе означают технологические нормы расхода продукта i на производство единицы продукта j (например, расход сахара на банку плодово-ягодных консервов или на килограмм мороженного, киловатт-часов электроэнергии и тонн угля на один автомобиль и т.д.). в стоимостном балансе коэффициенты а ij означают затраты отрасли I на каждый рубль валовой продукции отрасли j.

      В модели межотраслевого баланса коэффициенты прямых затрат а ij предполагаются постоянными. Это предположение позволяет с помощью уравнений (3) перейти от изучения и анализа сложившихся хозяйственных взаимосвязей к прогнозу пропорционального развития отраслей и планированию темпов их роста.

      В системе уравнений (3) все неизвестные х 1, х 2, … , х n перенесем в левую часть уравнения ми получим новую фору записи системы уравнений межотраслевого баланса:

      Модель межотраслевого баланса (5) имеет простую матричную форму записи (Е - А) Х = У и позволяет решить следующие задачи:

      1) определить конечный объем конечной продукции отраслей у 1, у 2, … , у n по заданным объемам валовой продукции у 1, у 2, … , у n (в матричной форме У = (Е - А) Х);

      2) по заданной матрице коэффициентов прямых затрат А определить матрицу коэффициентов полных затрат Р, элементы которой служат важными показателями для планирования развития отраслей (в матричной форме Р = (Е - А) -1);

      3) определить объемы валовой продукции отраслей х 1, х 2, … , х n по заданным объемам конечной продукции у 1, у 2, … , у n (в матричной форме Х = (Е - А) -1 У = Р У);

      4) по заданным объемам конечной или валовой продукции отраслей х 1, х 2, … , х n определить оставшиеся n объемов.

      В первой задаче планируется валовой выпуск продукции, а конечная продукция является производным показателем. Такой подход легче осуществить на практике, но он может привести к нерациональной структуре национального дохода и диспропорциям в развитии отдельных отраслей третья задача предлагает более прогрессивный принцип планирования - от национального дохода. Однако рассчитанные уровни валовой продукции для одних отраслей могут оказаться завышенными и ресурсно-необеспеченными, а для других - заниженными, не загружающими даже действующие производственные мощности. Четвертая задача в определенной степени отражает существую практику планирования.

      Для того чтобы матрица коэффициентов прямых материальных затрат А была продуктивной, необходимо и достаточно, чтобы выполнялось одно из перечисленных ниже условий:

      1) матрица (Е - А) неотрицательно обратима, т.е. существует обратная матрица (Е - А) -1 0;

      2) матричный ряд Е + А + А 2 + А 3 +….= сходится, причем его сумма равна обратной матрице (Е - А) -1 ;

      3) наибольшее по модулю собственное значение матрицы А, т.е. решение характеристического уравнения, строго меньше единицы;

      4) все главные миноры матрицы (Е - А), т.е. определители матриц, образованные элементами первых строк столбцов этой матрицы, порядка от 1 до n, положительны.

      Более простым способом проверки продуктивности матрицы А является ограничение на величину ее нормы. Если норма матрицы А строго меньше единицы, то эта матрица продуктивна. Данное условие являеться достаточным, но не необходимым условием продуктивной.

      План изложения и усвоения материала

      7.1 Принципиальная схема межотраслевого баланса

      7.2 Коэффициенты прямых и полных материальных затрат

      7.3 Решение задач с моделью межотраслевого баланса

      7.4 Межотраслевые балансовые модели в анализе экономических показателей

      Принципиальная схема межотраслевого баланса

      Балансовые модели широко используют в экономических исследованиях, анализе, планировании. Эти модели строятся на основании балансового метода, то есть согласовании материальных, трудовых и финансовых ресурсов. Если описывать экономическую систему в целом, то под балансовой моделью подразумевают систему уравнений, каждое из которых выражает балансовые соотношения между производством отдельными экономическими объектами объемов продукции и совокупной потребностью в этой продукции. При таком подходе экономическая система состоит из объектов, каждый из которых выпускает определенный продукт, часть которого потребляется им же и другими объектами системы, а остальное выводится за пределы системы как ее конечная продукция. Если вместо понятия "продукт" ввести более общее понятие "ресурс", то под балансовой моделью понимают систему уравнений, которые удовлетворяют требования соответствия о наличии ресурса и его использования. Можно также рассматривать примеры балансовой соответствия, а именно: соответствие имеющейся рабочей силы и количества рабочих мест, платежеспособного спроса населения и продукции (товаров и услуг) и др.

      Рассмотрим некоторые известные виды балансовых моделей:

      Частичные материальные, трудовые и финансовые балансы применительно к народного хозяйства или отдельных отраслей (регионов)

      Межотраслевые балансы;

      Матричные техпромфинплана предприятий и фирм.

      Балансовые модели строятся как числовые матрицы - прямоугольные таблицы чисел. В связи с этим балансовые модели относятся к типу матричных экономико-математических моделей. В матричных моделях балансовый метод получает четкое математическое выражение. Итак, матричную структуру имеют межотраслевой и межрегиональный балансы производства и распределения продукции отдельных регионов, модели промфинплан предприятий, фирм и т. Несмотря на специфику этих моделей, их объединяет не только общий формальный (математический) аппарат построения и единый алгоритм вычислений, но и аналогичность ряда экономических характеристик. Это позволяет рассматривать структуру, содержание и основные зависимости матричных моделей на примере межотраслевого баланса и распределения продукции в народном хозяйстве. Данный баланс отражает производство и распределение общественного продукта в отраслевом разрезе, межотраслевых производственных связей, использования материальных и трудовых ресурсов, создание и распределение национального дохода.

      Принципиальная схема межотраслевого баланса (МОБ) производства и распределения общественного продукта в стоимостном выражении приведена в таблице 7.1. В основу этой схемы положено разделение совокупного продукта на две части: промежуточный и конечный продукт; все народное хозяйство представлено здесь как совокупность отраслей (чистые отрасли). Каждая из этих отраслей фигурирует в балансе как производитель и как потребитель. Рассмотрим схему МГБ в разрезе его блоков, имеющих различный экономический смысл - их называют квадрантами баланса (на схеме квадранта обозначены римскими цифрами).

      Первый квадрант МОБ - это таблица межотраслевых потоков. Показатели, содержащиеся на пересечении строк и столбцов, есть объемами межотраслевых потоков продукции хij, и j - соответственно номера отраслей производителей и потребителей. Первый квадрант по форме является квадратной матрицей и-го порядка, сумма всех элементов которой равна годовому фонду воспроизведения амортизации средств производства в материальной сфере.

      В втором квадранте представлена конечная продукция всех отраслей материального производства, где под конечной продукцией подразумевается продукция выходит из сферы производства в конечное использование (на потребление и накопление). В табл. 11.1 этот раздел представлен в обобщенном виде как один столбик величин Уи; в развернутой схеме баланса конечный продукт каждой отрасли можно подать дифференцированно по направлениям использования: на личное потребление населения, общественное потребление, на накопление, покрытие убытков, экспорт и др.

      Третий квадрант МОБ также характеризует национальный доход, но со стороны его стоимостного состава - как сумму чистой продукции и амортизации; чистую продукцию понимается как сумму оплаты труда и чистого дохода отраслей. Объем амортизации (Cj) и чистой продукции () некоторой области называют условно чистой продукцией этой отрасли и обозначают в дальнейшем через .

      Четвертый квадрант отражает распределение и использование национального дохода. В результате перераспределения созданного национального дохода образуются временные доходы населения, предприятий, государства.

      Данные четвертого квадранта важны для отражения в межотраслевой модели баланса доходов и расходов населения, источников финансирования капиталовложений, текущих расходов непроизводственной сферы, для анализа общей структуры доходов по группам потребителей. В общем МГБ в рамках единой модели объединяет балансы отраслей материального производства, баланс совокупного общественного продукта, баланс национального дохода, баланс доходов и расходов населения.

      Во-первых, рассматривая схему баланса по столбцам, можно сделать вывод, что сумма материальных затрат любой отрасли-потребителя и ее чистый продукт равен валовой продукции этой отрасли:

      (7.1)

      Во-вторых, рассматривая МГБ по строкам для каждой отрасли-производителя, видим, что валовая продукция любой отрасли равна сумме материальных затрат отраслей, потребляющих ее продукцию, и конечной продукции данной отрасли:

      (7.2)

      Подытоживая систему уравнений (7.1), получаем:

      Аналогично, суммируя по i систему уравнений (7.2), получаем:

      Отсюда легко заметить, что

      Это уравнение показывает, что в межотраслевом балансе выполняется принцип эквивалентности материального и стоимостного состава национального дохода.